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The max ll‘l”)(x)l is attained at x=41 since! (I) 6r1—0k
=2r/(2n4+a+B—1) provided :<a, 3<$ and x;,=cos 6;. Using the
second asymptotic formula and the fact* that #8,—j, as n—  where
Ju is the kth positive zero of Js_1(x), we find that

I l](cn)(l) | N (‘%jk)a_2l P(B)Jﬂ(jk) |‘1 asn— o, k constant,

I (—1)—0 which proves the theorem:

THEOREM 7. Max ll@(x)l —>(%j1)ﬂ'2| T(B)Js(j1)|~* as n—> o (where
t<a, B=4%, j11s first positive zero of Js_1(x)).

A similar result holds for I (x) if 8 is replaced by a.

For Legendre polynomials (¢ =f=1) this limit is approximately
1.602. For a=8=1% and a=(=4% the limit of Theorem 7 is also an up-
per bound for max |l§”)(x)| and max |{” (x)|. Whether this is true, in
general, remains unanswered.
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AN INVARIANCE THEOREM FOR SUBSETS OF S»!
SAMUEL EILENBERG
The purpose of this paper is to establish the following.

INVARIANCE THEOREM. Let 4 and B be two homeomorphic subsets of
the n-sphere S*. If the number of components of S*— A 1s finite, then it
1s equal to the number of components of S*— B.

In the case when 4 and B are closed this theorem is a very well
known consequence of Alexander’s duality theorem and its generaliza-
tions. In our case we also derive our result as a consequence of a
duality theorem. However, the duality is established only for the di-
mension #—1.

Given a metric space X we shall say that I'* is a k-cycle in X if
there is a compact subset 4 of X such that I'* is a k-dimensional con-
vergent (Vietoris) cycle in A with coefficients modulo 2. We shall
write I'"*~0 if I'*~0 holds in some compact subset of X. The homol-
ogy group of X obtained this way will be denoted by 3¢*(X); the cor-
responding connectivity number, by p*(X). The number p*(X) can
be either finite or «.

1 Presented to the Society, December 28, 1939.



