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SOME T H E O R E M S ON DOUBLE LIMITS* 

BY J. D. HILL f 

1. Introduction, Let f(x, y) be an arbitrary single-valued real 
function of the real variables x, y defined in the neighborhood of 
a point Q(a, b)> which for simplicity may be taken as (0, 0). The 
following sufficient (and obviously necessary) condition for the 
existence of the double limit 

(1) limf(x,y) 

y->0 

has been established. 

THEOREM 1 (Clarkson)4 If ƒ(#, y) has a unique limit as 
P(x, y) approaches Q on every curve having a tangent at Q, the 
double limit (1) exists. 

The present note is concerned with similar theorems, and for 
definiteness we state at the outset that the assertion, "f(P) has 
a limit X as P—>Q on a point set§ E having Q as a limit point 
(or limp^o f(P) = X, on E)" shall mean that for each e > 0 there 
exists a positive ô(e, E) such that \f(P)— X| <e for all points 
P of E satisfying the condition 0 < | x| +\y\ <8. 

Theorem 1 naturally suggests a question which is answered 
by Lemma 1, for convenience in the statement of which we 
introduce the following definition. 

DEFINITION OF PROPERTY L. A class {E} of sets E, each 
having Q as a limit point, will be said to have Property L if 
and only if any set S whatsoever of points having C a s a limit 
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§ In particular, on a curve. 


