ON SEVERAL THEOREMS OF OPERATION GROUPS.

BY G. A. MILLER, PH. D.

§ 1.

In a recent number of the Quarterly Journal of Mathematics (vol. 28, p. 233) we proved the theorem, "Every group (G) whose order is divisible by p^4 , p being any prime number, contains a commutative group (G₁) of order p^3 ." The following proof of this theorem is much simpler and can readily be extended to apply to more general theorems.

G contains a subgroup (G') of order p^{α} , a > 3. G' contains a subgroup of order p whose substitutions* are commutative to all the substitutions of G'.[†] With respect to this subgroup G' is isomorphic to a group (G_1') of order $p^{\alpha-1}$. G_1' contains a subgroup of order p whose substitutions are commutative to all the substitutions of G_1' . With respect to this subgroup G_1' is isomorphic to a group (G_2') of order $p^{\alpha-2}$. Hence we may suppose the substitutions of G' so arranged that the first $p^{\beta}(\beta = 0, 1, 2, 3, \dots, \alpha - 1)$ constitute a self-conjugate (invariant) subgroup of G' and that each of its p sets of $p^{\beta-1}$ substitutions, in order, is transformed into itself by all the substitutions of G'.[†]

If we suppose $\beta = 2$ each of the p sets contain p substitutions. The substitutions of p-1 of these sets must be transformed, by all the substitutions of G', according to the cyclical group of order p or according to identity. Those in the first set are known to be transformed according to identity. Hence each of these p^2 substitutions must be commutative to at least p^{a-1} substitutions of G' and the the first p^4 in the given arrangement must contain a commutative group of order p^3 . This proves the given theorem.

In general, the first $p^{\beta-1}$ substitutions in the given arrangement are transformed by G' according to a group (H) of order p^{θ} . A substitution which is commutative to all the substitutions in the second set of $p^{\beta-2}$ is commutative to each of the given $p^{\beta-1}$ substitutions. Hence H is simply isomorphic to a group whose degree cannot exceed $p^{\beta-2}$ and the maximum value (M) of θ is given by the formula §

^{*} The operations are throughout represented by means of substitutions.

[†] SYLOW, Mathematische Annalen, vol. 5, p. 588.

[‡] Ibid.

[§] Cf. DIRICHLET-DEDEKIND, Zahlentheorie, p. 27.