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FIXED POINT THEOREMS FROM A DE RHAM PERSPECTIVE*
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1. Introduction. Let M be a smooth compact oriented Riemannian manifold
of dimension n, and f: M — M a smooth map. Define the Lefschetz number

n

L(f) = Z(_l)pTrace(f*lHP(M))'

p=0

The classical Lefschetz fixed point theorem states that if f has isolated nondegenerate
fixed points, then

L(f) = Z sign det (df, — I).
F(b)=b

Atiyah and Bott ([AB1],[AB2]) generalized this theorem to complexes of ellip-
tic operators; we briefly recall (under mild restrictions) their theorem. Let Ey, E4,
-+ ENn be a sequence of smooth hermitian vector bundles over M, equipped with a
sequence of first order differential operators D; : T'(F;) — T'(E;+1). This sequence,
denoted T'(E), is called an elliptic complex if for all 4,

D;1D; =0,
and
D!D; + D,_1D}_; is elliptic.
Here we set D; =0 for ¢ € [0, N — 1]. Set
HP(I'(E)) = KerD,/ImD,_;.
Given a smooth map f and smooth bundle homomorphisms ¢, : (f*E), — E,, we
may define endomorphisms T}, : I'(E,) — I'(E,) by
Tps = ¢pf*s.
When
DyTy = Tpy1 Dy, (1.1)
T := (Tp, - ,Ty) is called a geometric endomorphism of the complex T'(E). It induces
endomorphisms HPT of HP(I'(E)), and we define the Lefschetz number

N
L(T) = (~1)"Trace H'T.
p=0
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