PARAMETRIZATION OF SING Θ FOR A FANO 3-FOLD OF GENUS 7 BY MODULI OF VECTOR BUNDLES*

ATANAS ILIEV[†] AND DIMITRI MARKUSHEVICH[‡]

Abstract. According to Mukai, any prime Fano threefold X of genus 7 is a linear section of the spinor tenfold in the projectivized half-spinor space of Spin(10). The orthogonal linear section of the spinor tenfold is a canonical genus-7 curve Γ , and the intermediate Jacobian J(X) is isomorphic to the Jacobian of Γ . It is proven that, for a generic X, the Abel-Jacobi map of the family of elliptic sextics on X factors through the moduli space of rank-2 vector bundles with $c_1 = -K_X$ and deg $c_2 = 6$ and that the latter is birational to the singular locus of the theta divisor of J(X).

Key words. Spinors, spinor variety, Fano variety, moduli of vector bundles, intermediate Jacobian, Brill–Noether locus, orthogonal Grassmannian, theta divisor, elliptic sextic, symmetric powers of a curve

AMS subject classifications. 14J30

0. Introduction. This work is a sequel to the series of papers on moduli spaces $M_X(2; k, n)$ of stable rank-2 vector bundles on Fano 3-folds X with Picard group \mathbb{Z} for small Chern classes $c_1 = k$, $c_2 = n$. The nature of the results depends strongly on the index of X, which is defined as the largest integer that divides the canonical class K_X in Pic X. Historically, the first Fano 3-fold for which the geometry of such moduli spaces was studied was the projective space \mathbb{P}^3 , the unique Fano 3-fold of index 4. The most part of results for \mathbb{P}^3 concerns the problems of rationality, irreducibility or smoothness of the moduli space, see [Barth-1], [Barth-2], [Ha], [HS], [LP], [ES], [HN], [M], [BanM], [GS], [K], [KO], [CTT] and references therein.

The next case is the 3-dimensional quadric Q^3 , which is Fano of index 3. Much less is known here, see [OS]. Further, the authors of [SW] identified the moduli spaces $M_X(2; -1, 2)$ on all the Fano 3-folds X of index 2 except for the double Veronese cone V'_1 , which are (in the notation of Iskovskikh) the quartic double solid V_2 , a 3-dimensional cubic V_3 , a complete intersection of two quadrics V_4 , and a smooth 3dimensional section of the Grassmannian G(2, 5) by three hyperplanes V_5 . It turns out that all the vector bundles in $M_X(2; -1, 2)$ for these threefolds are obtained by Serre's construction from conics. Remark that for \mathbb{P}^3 and Q^3 all the known moduli spaces are either rational or supposed to be rational, whilst [SW] provides first nonrational examples.

We will also mention the paper [KT] on the moduli of stable vector bundles on the flag variety $\mathbb{F}(1,2)$, though it is somewhat apart, for $\mathbb{F}(1,2)$ has Picard group 2Z. This is practically all what was known on the subject until the year 2000, when a new tool was brought into the study of the moduli spaces: the Abel–Jacobi map to the intermediate Jacobian J(X). For the 3-dimensional cubic $X = V_3$, it was proved in [MT-1], [IM-1] that the open part of $M_X(2;0,2)$ parametrizing the vector bundles obtained by Serre's construction from elliptic quintics is sent by the Abel–Jacobi map isomorphically onto an open subset of J(X). Druel [D] proved the irreducibility of

^{*}Received May 12, 2006; accepted for publication May 22, 2006.

[†]Institute of Mathematics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 8, 1113 Sofia, Bulgaria (ailiev@math.bas.bg). Partially supported by the grant MI-1503/2005 of the Bulgarian Foundation for Scientific Research.

[‡]Mathématiques - bât.M2, Université Lille 1, F-59655 Villeneuve d'Ascq Cedex, France (markushe@math.univ-lille1.fr). Partially supported by the grant INTAS-OPEN-2000-269.