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BUILDINGS AND THEIR APPLICATIONS IN
GEOMETRY AND TOPOLOGY∗

LIZHEN JI†

To the memory of Professor S.S. Chern

Abstract. Buildings were first introduced by J. Tits in 1950s to give systematic geometric inter-
pretations of exceptional Lie groups and have been generalized in various ways: Euclidean buildings
(Bruhat-Tits buildings), topological buildings, R-buildings, in particular R-trees. They are useful
for many different applications in various subjects: algebraic groups, finite groups, finite geometry,
representation theory over local fields, algebraic geometry, Arakelov intersection for arithmetic va-
rieties, algebraic K-theories, combinatorial group theory, global geometry and algebraic topology,
in particular cohomology groups, of arithmetic groups and S-arithmetic groups, rigidity of cofinite
subgroups of semisimple Lie groups and nonpositively curved manifolds, classification of isoparamet-
ric submanifolds in Rn of high codimension, existence of hyperbolic structures on three dimensional
manifolds in Thurston’s geometrization program. In this paper, we survey several applications of
buildings in differential geometry and geometric topology. There are four underlying themes in these
applications:

1. Buildings often describe the geometry at infinity of symmetric spaces and locally symmetric
spaces and also appear as limiting objects under degeneration or scaling of metrics.

2. Euclidean buildings are analogues of symmetric spaces for semisimple groups defined over
local fields and their discrete subgroups.

3. Buildings of higher rank are rigid and hence objects which contain or induce higher rank
buildings tend to be rigid.

4. Additional structures on buildings, for example, topological buildings, are important in
applications for infinite groups.
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