POSITIVE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION ON \mathbb{R}^{N} WITH INDEFINITE NONLINEARITY

S. Cingolani* and J.L. Gámez \dagger
Scuola Normale Superiore, Pisa, 56100 Italy

(Submitted by: A. Ambrosetti)

1. Introduction. In recent years several authors have investigated the "indefinite" semilinear problem

$$
\begin{align*}
-\Delta u(x) & =\lambda u(x)+g(x) f(u(x)), \quad \text { for } \quad x \in \Omega \tag{1.1}\\
u & =0, \quad \text { for } x \in \partial \Omega
\end{align*}
$$

where Ω is an open bounded regular domain, λ is a real parameter, g is a changing-sign function and f is superlinear nonlinearity (see $[1,6,8,9]$).

The main purpose of this paper is to extend these existence and multiplicity results to \mathbb{R}^{N}.

Precisely, in this paper we look for positive solutions of the problem

$$
\begin{align*}
-\Delta u(x) & =\lambda h(x) u(x)+g(x)|u(x)|^{p-2} u(x), \quad \text { for } \quad x \in \mathbb{R}^{N} \tag{1.2}\\
u & \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)
\end{align*}
$$

where λ is a real parameter, $N>2,2<p<2^{*}=\frac{2 N}{N-2}$.
To deal with (1.2), we shall assume throughout the paper that functions $g, h: \mathbb{R}^{N} \rightarrow$ \mathbb{R} satisfy the assumptions:
(H1) h is a continuous function, $h^{+} \not \equiv 0, h \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap L^{\frac{N}{2}}\left(\mathbb{R}^{N}\right)$;
(G1) g is a continuous function, $g \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap L^{q}\left(\mathbb{R}^{N}\right)$, where $q=\frac{2 N}{2 N-p N+2 p}$.
The role of (H1-G1) is to overcome the lack of compactness and to obtain some a priori bounds for λ. This is done in Section 2. In addition, if (H1) holds, it is well known that there exists the positive principal eigenvalue, $\lambda_{1}(h)$, of the corresponding eigenvalue problem

$$
\begin{align*}
-\Delta u(x) & =\lambda h(x) u(x), \quad \text { for } \quad x \in \mathbb{R}^{N} \\
u & \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) . \tag{1.3}
\end{align*}
$$

[^0]
[^0]: Received for publication December 1995.
 *Supported by M.U.R.S.T., "Problemi Nonlineari. . ." and by CHRX-CT94-0494.
 \dagger Supported by ERBCHBGCT920011 Human Capital and Mobility Institutional fellowships. Permanent address: Departamento de Análisis Matemático, Universidad de Granada, Granada, Spain. The hospitality and support of Scuola Normale Superiore of Pisa are gratefully acknowledged.

 AMS Subject Classifications: 35J20, 35J60.

