A CHARACTERIZATION OF THE STANDARD EMBEDDINGS OF $\mathbb{C} P^{2}$ AND Q^{3}

Jost Eschenburg, Maria Joao Ferreira \& Renato Tribuzy

Abstract

H. Hopf showed that the only constant mean curvature sphere \mathbb{S}^{2} immersed in \mathbb{R}^{3} is the round sphere. The Kähler framework is an adequate approach to generalize Hopf's theorem to higher dimensions. When $\varphi: M \rightarrow \mathbb{R}^{n}$ is an isometric immersion from a Kähler manifold, the complexified second fundamental form α splits according to types. The $(1,1)$ part of the second fundamental form plays the role of the mean curvature for surfaces and will be called the pluri-mean curvature $p m c$. Therefore isometric immersions with parallel pluri-mean curvature (p pmc isometric immersions) generalize in a natural way the cmc immersions. It is a standard fact that \mathbb{R}^{8} is the smallest space where $\mathbb{C} P^{2}$ can be embedded. The aim of this work is to generalize Hopf's theorem proving in particular that the only ppmc isometric immersion from $\mathbb{C} P^{2}$ into \mathbb{R}^{8} is the standard immersion.

1. Introduction and statement of results

The smallest \mathbb{R}^{k} into which $\mathbb{S}^{2}=\mathbb{C} P^{1}$ may be embedded is \mathbb{R}^{3}. H. Hopf [13] showed that, up to congruence, the only constant mean curvature (cmc) isometric immersion from the sphere into \mathbb{R}^{3} is the standard immersion. Affording higher dimensions in the domain manifold, an adequate setting is the class of Kähler manifolds. When M is a Kähler manifold and $\varphi: M \longrightarrow \mathbb{R}^{n}$ is an isometric immersion, the coupling of the second fundamental form α of φ with the complex structure J of M originates two operators. To describe these operators we denote respectively by $T^{c} M, T^{\prime} M$ and $T^{\prime \prime} M$ the complexification of $T M$ and the eigenbundles of J corresponding to the eigenvalues i and $-i$. We will denote π^{\prime} and $\pi^{\prime \prime}$ respectively the orthogonal projections of $T^{c} M$ onto $T^{\prime} M$ and $T^{\prime \prime} M$. Accordingly, each $X \in T^{c} M$ is decomposed as $X=X^{\prime}+X^{\prime \prime}$ where

$$
X^{\prime}=\pi^{\prime}(X)=\frac{1}{2}(X-i J X), \quad X^{\prime \prime}=\pi^{\prime \prime}(X)=\frac{1}{2}(X+i J X)
$$

[^0]
[^0]: The authors wish to thank Fundação para a Ciência e Tecnologia, Portugal and CNPq and FAPEAM, Brasil, for support.

 Received 03/07/2008.

