NODES ON SEXTIC HYPERSURFACES IN \mathbb{P}^{3}

JONATHAN WAHL

In this note we present a coding theory result which, together with Theorem 3.6.1 of [3], gives a short proof of a theorem of D. Jaffe and D. Ruberman:

Theorem [5]. A sextic hypersurface in \mathbb{P}^{3} has at most 65 nodes.
W. Barth [1] has constructed an example with 65 nodes. Following V. Nikulin [7] and A. Beauville [2], one must limit the size of an even set of nodes, and then prove a result about binary linear codes (i.e., linear subspaces of \mathbb{F}^{n}, where \mathbb{F} is the field of two elements). The first step is the aforementioned result of Casnati-Catanese:

Theorem [3]. On a sextic hypersurface, an even set of nodes has cardinality 24, 32 or 40 .

The desired theorem will follow from:
Theorem A. Let $V \subset \mathbb{F}^{66}$ be a code, with weights from among 24, 32 and 40. Then $\operatorname{dim}(V) \leq 12$.

1. Codes from nodal hypersurfaces

(1.1) Let $\Sigma \subset \mathbb{P}^{3}$ be a hypersurface of degree d having only μ ordinary double points as singularities. Let $\pi: S \rightarrow \Sigma$ be the minimal resolution of the singularities, with exceptional (-2)-curves E_{i}. Thus

$$
\begin{equation*}
E_{i} \cdot E_{j}=-2 \delta_{i j} . \tag{1.1.1}
\end{equation*}
$$

S is diffeomorphic to a smooth hypersurface of degree d.

[^0]
[^0]: Received June 10, 1997. This research was partially supported by NSF Grant DMS-9302717.

