J. DIFFERENTIAL GEOMETRY 48 (1998) 439-444

NODES ON SEXTIC HYPERSURFACES IN \mathbb{P}^3

JONATHAN WAHL

In this note we present a coding theory result which, together with Theorem 3.6.1 of [3], gives a short proof of a theorem of D. Jaffe and D. Ruberman:

Theorem [5]. A sextic hypersurface in \mathbb{P}^3 has at most 65 nodes.

W. Barth [1] has constructed an example with 65 nodes. Following V. Nikulin [7] and A. Beauville [2], one must limit the size of an even set of nodes, and then prove a result about binary linear **codes** (i.e., linear subspaces of \mathbb{F}^n , where \mathbb{F} is the field of two elements). The first step is the aforementioned result of Casnati-Catanese:

Theorem [3]. On a sextic hypersurface, an even set of nodes has cardinality 24, 32 or 40.

The desired theorem will follow from:

Theorem A. Let $V \subset \mathbb{F}^{66}$ be a code, with weights from among 24, 32 and 40. Then dim $(V) \leq 12$.

1. Codes from nodal hypersurfaces

(1.1) Let $\Sigma \subset \mathbb{P}^3$ be a hypersurface of degree d having only μ ordinary double points as singularities. Let $\pi : S \to \Sigma$ be the minimal resolution of the singularities, with exceptional (-2)-curves E_i . Thus

(1.1.1)
$$E_i \cdot E_j = -2\delta_{ij}$$

S is diffeomorphic to a smooth hypersurface of degree d.

Received June 10, 1997. This research was partially supported by NSF Grant DMS-9302717.