J. DIFFERENTIAL GEOMETRY 45 (1997) 78-98

EQUIVARIANT HOLOMORPHIC MORSE INEQUALITIES I: A HEAT KERNEL PROOF

VARGHESE MATHAI & SIYE WU

Abstract

Assume that the circle group acts holomorphically on a compact Kähler manifold with isolated fixed points and that the action can be lifted holomorphically to a holomorphic vector bundle. We use some techniques developed by Bismut and Lebeau to give a heat kernel proof of the equivariant holomorphic Morse inequalities, which, first obtained by Witten using a different argument, produce bounds on the multiplicities of weights occurring in the twisted Dolbeault cohomologies in terms of the data of the fixed points.

1. Introduction

Morse theory gives some topological information of manifolds by means of the critical points of functions. Let h be a Morse function on a compact manifold of real dimension n and suppose that h has isolated critical points only. Let m_k $(0 \le k \le n)$ be the k-th Morse number, the number of critical points of Morse index k. The Hopf formula for the gradient vector field says that the alternating sum of m_k is equal to that of the Betti numbers b_k :

(1.1)
$$\sum_{k=0}^{n} (-1)^{k} m_{k} = \sum_{k=0}^{n} (-1)^{k} b_{k}.$$

Received March 15, 1996, and, in revized form, March 24, 1997. The second author was partially supported by NSF grants DMS-93-05578 at Columbia University, DMS-90-22140 at MSRI and by ICTP.