REGULARITY FOR THE HARVEY-LAWSON SOLUTIONS TO THE COMPLEX PLATEAU PROBLEM

STEPHEN S.-T. YAU

1. Introduction

It seems that one of the natural fundamental questions of complex geometry is the classical complex Plateau problem. Specifically, the problem asks which odd-dimensional, real submanifolds of \mathbf{C}^{N} are boundaries of complex submanifolds in \mathbf{C}^{N}.

Recall that a C^{1}-submanifold M of a complex manifold X is said to be maximally complex if

$$
\operatorname{codim}_{\mathbf{R}}\left(T_{x} M \cap J\left(T_{x} M\right)\right)=1 \quad \text { for all } x \in M,
$$

where J denotes the almost complex structure of X, and the codimension refers to M. It was a fundamental contribution to complex geometry by Harvey and Lawson [3] that if M is compact, oriented, and of dimension larger than 1 , and if X is Stein, then maximal complexity implies that M forms the boundary of a holomorphic n-chain in X.

If M is a CR-manifold in the sense of Kohn [6], [2] (see Definition 2.1 below), then there is a natural filtration associated to the De Rham complex of M with complex coefficients [8], [9]. The $E_{1}^{p, q}$ term of the spectral sequence associated to this filtration is called the Kohn-Rossi cohomology group $H_{\mathrm{KR}}^{p, q}(M)$ of M [7], [8], [9]. In [9], we gave smooth solutions to the classical complex Plateau problem in the following cases.

Theorem 1. Let M be a compact, orientable, connected CR-manifold of real dimension $2 n-1, n \geq 3$, in a Stein manifold X of complex dimension $n+1$. Suppose that M is strongly pseudoconvex. Then M is a boundary of a complex submanifold $V \subseteq X-M$ if and only if Kohn-Rossi's cohomology groups $H_{\mathrm{KR}}^{p, q}(M)$ are zero for $1 \leq q \leq n-2$.

However, for strongly pseudoconvex (see Definition 2.4 below) CRmanifolds of real dimension three in \mathbf{C}^{3}, the smoothness of HarveyLawson solutions to the classical complex plateau problem remains open.

[^0]
[^0]: Received February 27, 1990 and, in revised form, June 19, 1990. Research partially supported by National Science Foundation grant DMS-8822747.

