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1. Introduction

The main subject of this paper is the construction of closed CMC sur-
faces of any genus g > 3. The abbreviation “CMC surfaces” is used
throughout the paper and stands for “properly immersed complete bound-
aryless surfaces in E* of constant mean curvature H = 1”. We also
talk about “compact CMC surfaces”, which means the same except “with
boundary” rather than without. Compact CMC surfaces of any genus
g > 3 with boundary a round planar circle are also constructed. These con-
structions are achieved by properly strengthening the methods employed
in [10] to construct CMC surfaces with ends. The main results of this
paper were announced in [8].

The question of whether such surfaces exist has a long history. In
1853 J. H. Jellett proved that star-shaped closed CMC surfaces are round
spheres. In 1900 Liebmann [13] proved the same for convex surfaces.
S.-S. Chern [3] extended Liebman’s result to a certain class of convex W-
surfaces. Hopf [5] established that any CMC topological sphere is round
and asked whether the same is true for all closed CMC surfaces. Alexan-
drov [1] gave an affirmative answer for embedded surfaces. Wu-Yi Hsiang
settled in the negative the higher dimensional analogue to Hopf’s question
[6]. Eventually, H. C. Wente [14] settled the so-called Hopf’s conjecture
also in the negative by constructing infinitely many CMC tori.

This paper is self-contained in the sense that the results presented here
can be understood without reference to any other papers. However, many
of the proofs are extensions of proofs in [10] and it would be impossible
to make them self-contained without repeating most of that paper. Famil-
iarity with [10] would be helpful also in understanding the basic idea of
the construction which we proceed to outline.
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