ON TWISTOR SPACES OF THE CLASS &

F. CAMPANA

0. Introduction

Let M^{2n} be a 2*n*-dimensional compact and connected oriented Riemannian manifold, and Z(M) be its twistor space. The M^{2n} for which Z(M) is Kähler are classified, up to conformal equivalence, in [16], [13] for n = 2, in [24] for $n \ge 4$ and even, and in [3] for $n \ge 3$. The proofs are mainly differential-geometric.

Y. S. Poon has, however, constructed self-dual metrics on $\mathbb{P}_2(\mathbb{C}) \neq \mathbb{P}_2(\mathbb{C}) = M^4$ for which Z(M) is in Fujiki's class \mathscr{C} (i.e., bimeromorphic to a compact Kähler manifold), but *not* Kähler.

We show here that:

(1) for $n \ge 3$, Z(M) is in \mathscr{C} iff it is Kähler, iff $M^{2n} = S^{2n}$;

(2) for n = 2, if Z(M) is in \mathscr{C} , then M is either S^4 , or homeomorphic to the connected sum of $\tau(M) > 0$ copies of $\mathbb{P}_2(\mathbb{C})$.

Apart from well-known facts, the proof consists in showing that if Z(M) is in \mathscr{C} , then $\pi_1(M) = \pi_1(Z(M)) = 0$ where π_1 denotes the fundamental group.

This last equality is obtained by purely complex-geometric methods, using the simple-connectedness of the twistor fibers, and the compactness of the Chow scheme of manifolds in \mathscr{C} . More precisely, it is possible (see Theorem 2.2) to evaluate $\pi_1(Z)$, for Z in \mathscr{C} , from $\pi_1(Y)$ and $\pi_1(A)$ if A and Y are compact connected submanifolds of Z, such that Y has enough "deformations" meeting A in Z. When Y is a smooth rational curve with ample normal bundle in Z (for example, a twistor fiber in $Z(M^4)$), and A is a point on Y, we get, in particular, $\pi_1(Z) = 0$. This extends a former result of J. P. Serre on the fundamental group of a unirational variety.

1. Preliminaries

1.1 Notation. Let X be any irreducible complex analytic space. Then $\pi_1(X) := \pi_1(X, a)$ for some unspecified a in X.

Received January 5, 1989 and, in revised form, October 24, 1989.