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THE RICCI FLOW ON THE 2-SPHERE

BENNETT CHOW

1. Introduction

The classical uniformization theorem, interpreted differential geomet-
rically, states that any Riemannian metric on a 2-dimensional surface is
pointwise conformal to a constant curvature metric. Thus one can con-
sider the question of whether there is a natural evolution equation which
conformally deforms any metric on a surface to a constant curvature met-
ric. The primary interest in this question is not so much to give a new
proof of the uniformization theorem, but rather to understand nonlinear
parabolic equations better, especially those arising in differential geome-
try. A sufficiently deep understanding of parabolic equations should yield
important new results in Riemannian geometry.

The question in the preceding paragraph has been studied by Richard
Hamilton [3] and Brad Osgood, Ralph Phillips and Peter Sarnak [6]. In [3],
Hamilton studied the following equation, which we refer to as Hamilton’s
Ricci flow

(%) gx,t)=(r—R(x,t)gx,t), XeEM, t>0,

where g is the metric, R is the scalar curvature of g (= twice the Gaus-
sian curvature K ), r is the average of R, and = 8/9¢. The r in the
equation above is inserted simply to preserve the area of M . He proved:

Theorem 1.1 (Hamilton). Let (M, g) be a compact oriented Rieman-
nian surface.

(1) If M is not diffeomorphic to the 2-sphere S2, then any metric g
converges to a constant curvature metric under equation ( * ).

(2) If M is diffeomorphic to S?, then any metric g with positive Gaus-
sian curvature on S* converges to a metric of constant curvature under

Osgood, Phillips and Sarnak have given a different proof of part (1). The
object of this paper is to remove the assumption in Hamilton’s theorem
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