*L*²-INDEX THEOREMS ON CERTAIN COMPLETE MANIFOLDS

JOCHEN BRÜNING

1. Introduction

Consider a Riemannian manifold M, Hermitian vector bundles E and F over M, and a first order elliptic differential operator $D: C^{\infty}(E) \to C^{\infty}(F)$. Such operators arise naturally from the Riemannian structure like the Gauss-Bonnet and the signature operator; more generally, one can consider the Dirac operators in the sense of [10]. Being a differential operator, D has closed extensions \overline{D} mapping the Hilbert space $\mathscr{D}(\overline{D})$ (with the graph norm) to $L^2(F)$. In particular, there is the closure D_{\min} and the maximal extension $D_{\max} = (D'_{\min})^*$, where $D': C^{\infty}(F) \to C^{\infty}(E)$ is the formal adjoint. If M is complete, then $D_{\max} = D_{\min}$ for all Dirac operators. Moreover, if M is compact, then D_{\max} is a Fredholm operator, and its index is given by the celebrated Atiyah-Singer index formula. In general, D may or may not have a Fredholm extension. In this work we deal with a class of operators which need not be Fredholm but have a finite L^2 -index in the sense that ker $D \cap L^2(E)$ and ker $D' \cap L^2(F)$ both have finite dimension; then we define

(1.1)
$$L^{2} - \operatorname{ind} D := \dim \ker D \cap L^{2}(E) - \dim \ker D' \cap L(F).$$

We will also assume that M is complete and $D_{\max} = D_{\min}$. Then if D_{\min} is Fredholm, we have $\operatorname{ind} D_{\min} = L^2 \cdot \operatorname{ind} D$, but our assumptions will not imply the Fredholm property. Note that if D has a finite L^2 -index, then a closed extension \overline{D} is Fredholm if and only if the essential spectrum $\sigma_e(\overline{D}^*\overline{D})$ of the self-adjoint operator $\overline{D}^*\overline{D}$ has a positive lower bound. Still, the situation which we treat should be regarded as a type I case in the sense of [13].

Our model case is a complete manifold with finitely many ends which are all warped products. It follows from simple examples that the L^2 cohomology for such manifolds can be infinite, so we need a condition on the warping function f (formula (2.14) below) which allows at most

Received June 20, 1988 and, in revised form, April 10, 1989.