GAUSSIAN MAPS ON ALGEBRAIC CURVES

JONATHAN WAHL

0. Introduction

Let C be a complete nonsingular curve over C and let L be a line bundle of positive degree. We have previously considered [8] the natural map

$$\Phi_L: \Lambda^2 H^0(L) \to H^0(\Omega_C^1 \otimes L^2),$$

defined essentially by

$$f \wedge g \mapsto f \, dg - g \, df.$$

If $C \subset \mathbf{P}^n$ is an embedding and $L = \mathscr{O}_C(1)$, one may consider the Gauss mapping

 $C \rightarrow \operatorname{Grass}(1, n)$,

associating to each point its tangent line in \mathbf{P}^n . Composing with the Plucker embedding of the Grassmannian into \mathbf{P}^N gives the "associated curve" $\psi: C \to \mathbf{P}^N$. One checks that restriction of the hyperplane section $\psi^*: H^0(\mathbf{P}^N, \mathscr{O}_{\mathbf{P}^N}(1)) \to H^0(C, \psi^*\mathscr{O}(1))$ for this map gives Φ_L (note $H^0(\mathbf{P}^N, \mathscr{O}_{\mathbf{P}}(1)) \simeq \wedge^2 H^0(\mathbf{P}^n, \mathscr{O}(1)) \simeq \wedge^2 H^0(C, L)$). For this reason we call Φ_L or its generalization a *Gaussian* map, and its image the Gaussian linear series.

The original interest in these maps arose from studying Φ_K , where K is the canonical bundle on a smooth curve (Φ_K has been named the "Wahl map" by certain authors [3]).

Theorem 1 [8]. If the smooth curve C lies on a K-3 surface, then Φ_K is not surjective.

Theorem 2 [8]. If $C \subset \mathbf{P}^n$ is a complete intersection, with multidegrees $d_1 \leq d_2 \leq \cdots \leq d_{n-1}$ $(d_1 \geq 2)$, then Φ_K is surjective if $d_1 + \cdots + d_{n-2} > n+1$.

Theorem 3 [3]. For a general curve C of genus 10 or ≥ 12 , Φ_K is surjective.

Theorem 1 gives the only known intrinsic property which a curve must satisfy in order to sit on a K-3 surface. Our original proof involved the

Received September 8, 1988.