MODIFIED DEFECT RELATIONS FOR THE GAUSS MAP OF MINIMAL SURFACES. II

HIROTAKA FUJIMOTO

1. Introduction

Let $x = (x_1, \dots, x_m)$: $M \to \mathbb{R}^m$ be a (connected, oriented) minimal surface immersed in a Euclidean *m*-space \mathbb{R}^m $(m \ge 3)$. We denote the set of all oriented 2-planes in \mathbb{R}^m by Π . For each $P \in \Pi$ taking a positive orthonormal basis (X, Y) of P and setting Z := (X - iY)/2 in a complex number *m*-space \mathbb{C}^m , we assign the point $\Phi(P) := \pi(Z)$, where π denotes the canonical projection of $\mathbb{C}^m - \{0\}$ onto the complex projective space $P^{m-1}(\mathbb{C})$. Then the map $\Phi: \Pi \to P^{m-1}(\mathbb{C})$ maps Π bijectively onto the quadric

$$Q_{m-2}(\mathbf{C}) := \{ (w_1; \cdots; w_m); w_1^2 + \cdots + w_m^2 = 0 \}.$$

For a point $p \in M$ the tangent plane $T_p(M)$ of M at p is considered an oriented 2-plane in \mathbb{R}^m , where $T_p(\mathbb{R}^m)$ is identified with \mathbb{R}^m by the parallel translation which maps p to the origin. By definition, the (generalized) Gauss map of M is the map $G: M \to Q_{m-2}(\mathbb{C}) (\subset P^n(\mathbb{C}))$ which maps each point $p \in M$ to the point $\Phi(T_p(M))$, where n = m - 1. The metric induced from \mathbb{R}^m gives a conformal structure on M, and M is considered a Riemann surface. By the assumption of minimality of M, G is a holomorphic map of M into $P^n(\mathbb{C})$. In the case m = 3, $Q_1(\mathbb{C})$ can be identified with the Riemann sphere, and G is considered a meromorphic function, whose conjugate is the classical Gauss map of M.

In 1981, F. Xavier showed that the Gauss map of a nonflat complete minimal surface in \mathbb{R}^3 could not omit 7 points of the sphere [13]. Afterwards, as a generalization of this, the author proved that, if the Gauss map G of a complete minimal surface M in \mathbb{R}^m is nondegenerate, namely, G(M)is not contained in any hyperplane in $P^{m-1}(\mathbb{C})$, then it can omit at most m^2 hyperplanes in general position [4]. Moreover, in [5] and [6] he gave several improvements of this result. Recently, the author has improved F. Xavier's result by showing that the Gauss map of a nonflat complete

Received April 25, 1988.