NODAL SETS FOR SOLUTIONS OF ELLIPTIC EQUATIONS

ROBERT HARDT \& LEON SIMON

Here we study, on a connected domain $\Omega \subset \mathbf{R}^{n}$, the zero set $u^{-1}\{0\}$ of a solution u of an elliptic equation

$$
a_{i j} D_{i} D_{j} u+b_{j} D_{j} u+c u=0
$$

where $a_{i j}, b_{j}, c$ are bounded and $a_{i j}$ is continuous.
Our principal result (precisely stated in Theorem (1.7) below) is that the $(n-1)$-dimensional Hausdorff measure of $u^{-1}\{0\}$ is finite in a neighborhood of any point $x_{0} \in \Omega$ at which u has finite order of vanishing. (For Lipschitz $a_{i j}$ this holds at each point $x_{0} \in \Omega$ by the unique continuation theory for elliptic equations.) We actually obtain an explicit bound on the Hausdorff measure of $u^{-1}\{0\}$ in terms of the order of vanishing of u, the modulus of continuity of $a_{i j}$, and the bounds on $a_{i j}, b_{j}, c$.

Notice that in the case the coefficients $a_{i j}, b_{j}, c$ are analytic, u is then real analytic [8], and the finiteness of the ($n-1$)-dimensional Hausdorff measure of $u^{-1}\{0\}$ is automatic [3, 3.4.8]. The explicit bound on the ($n-1$)-dimensional Hausdorff measure is nevertheless of interest in this case, but a more precise estimate for the real analytic case was already established in [2].

We also show here (in Theorem (1.10)) that if the coefficients are sufficiently smooth then $u^{-1}\{0\}$ decomposes into a disjoint union of the embedded C^{1} submanifold $u^{-1}\{0\} \cap\{|D u|>0\}$ together with the closed set $u^{-1}\{0\} \cap|D u|^{-1}\{0\}$, which we show is countably ($n-2$)-rectifiable. L. Caffarelli and A. Friedman showed already in [1] that $\operatorname{dim} u^{-1}\{0\} \cap$ $|D u|^{-1}\{0\} \leq n-2$ in the case of equations of the special form $\Delta u+$ $f(x, u)=0$. We thank F. H. Lin for pointing out this reference.

In $\S 5$ of the present paper we apply the main estimates of $\S 1$ and an estimate of Donnelly and Fefferman [2] for the order of vanishing of eigenfunctions to give an asymptotic bound of the ($n-1$)-dimensional measure

[^0]
[^0]: Received July 21, 1987 and, in revised form, March 11, 1988. This work was supported by National Science Foundation grants at the University of Minnesota and Stanford University.

