ON THE EXISTENCE AND REGULARITY OF FUNDAMENTAL DOMAINS WITH LEAST BOUNDARY AREA

JAIGYOUNG CHOE

Introduction

Let M be a three-dimensional compact smooth Riemannian manifold. Let Φ_0 be the set of all fundamental domains of M with Lipschitz boundary in \tilde{M} , the universal covering space of M. Then it is a question of basic interest to see whether one can find a fundamental domain in Φ_0 with least boundary area among all fundamental domains in Φ_0 . Moreover, passing to subfamilies of Φ_0 , one can ask similar questions: Let Φ_1 be the subfamily of Φ_0 consisting of all fundamental domains of M which are homeomorphic to an open ball, and let Φ_2 be the subfamily of Φ_1 consisting of all fundamental domains of M whose closures are homeomorphic to a closed ball. Can one find a fundamental domain in Φ_1 , or Φ_2 , whose boundary area (counting multiplicity) is the minimum among all fundamental domains in Φ_1 , or Φ_2 ? These problems were proposed by Michael H. Freedman.

In this paper we answer the first problem, the case of Φ_0 , in the affirmative (Theorem 3). We then discuss the second problem, the case of Φ_1 , and derive an affirmative answer under the assumption that M is irreducible, that is, every embedded sphere in M bounds a ball (Theorem 5). The third problem, the case of Φ_2 , remains open. Besides the existence of minimizing fundamental domains in Φ_0 and Φ_1 , we also obtain the regularity of the boundaries of these minimizing fundamental domains (Theorem 4). If we define a spine to be a subset of M whose complement in M is homeomorphic to an open ball, then the second problem is equivalent to finding an area minimizing spine of M.

For a two-dimensional compact Riemannian manifold M^2 the problem is much simpler to solve and easier to visualize. In fact, any fundamental domain of M^2 with least boundary length among all fundamental domains is always homeomorphic to an open disk. Furthermore the boundary of a minimizing fundamental domain consists of geodesic segments of \tilde{M}^2 meeting each other at 120° angles, and the number of edges and vertices are both $6 - 6\chi(M)$

Received March 4, 1987, and, in revised form, January 13, 1988.