ON THE EXISTENCE AND REGULARITY OF FUNDAMENTAL DOMAINS WITH LEAST BOUNDARY AREA

JAIGYOUNG CHOE

Introduction

Let M be a three-dimensional compact smooth Riemannian manifold. Let Φ_{0} be the set of all fundamental domains of M with Lipschitz boundary in \tilde{M}, the universal covering space of M. Then it is a question of basic interest to see whether one can find a fundamental domain in Φ_{0} with least boundary area among all fundamental domains in Φ_{0}. Moreover, passing to subfamilies of Φ_{0}, one can ask similar questions: Let Φ_{1} be the subfamily of Φ_{0} consisting of all fundamental domains of M which are homeomorphic to an open ball, and let Φ_{2} be the subfamily of Φ_{1} consisting of all fundamental domains of M whose closures are homeomorphic to a closed ball. Can one find a fundamental domain in Φ_{1}, or Φ_{2}, whose boundary area (counting multiplicity) is the minimum among all fundamental domains in Φ_{1}, or Φ_{2} ? These problems were proposed by Michael H. Freedman.

In this paper we answer the first problem, the case of Φ_{0}, in the affirmative (Theorem 3). We then discuss the second problem, the case of Φ_{1}, and derive an affirmative answer under the assumption that M is irreducible, that is, every embedded sphere in M bounds a ball (Theorem 5). The third problem, the case of Φ_{2}, remains open. Besides the existence of minimizing fundamental domains in Φ_{0} and Φ_{1}, we also obtain the regularity of the boundaries of these minimizing fundamental domains (Theorem 4). If we define a spine to be a subset of M whose complement in M is homeomorphic to an open ball, then the second problem is equivalent to finding an area minimizing spine of M.

For a two-dimensional compact Riemannian manifold M^{2} the problem is much simpler to solve and easier to visualize. In fact, any fundamental domain of M^{2} with least boundary length among all fundamental domains is always homeomorphic to an open disk. Furthermore the boundary of a minimizing fundamental domain consists of geodesic segments of \tilde{M}^{2} meeting each other at 120° angles, and the number of edges and vertices are both $6-6 \chi(M)$

