AN INDEX THEOREM ON OPEN MANIFOLDS. II

JOHN ROE

Introduction

This paper is the sequel to [19], in which we proved an abstract index theorem for Dirac-type operators on certain noncompact manifolds. Here we will give some concrete applications of this result, and will also discuss its relationship with L^2 index theorems of Atiyah and Connes.

The set-up for [19] is as follows. Let M be a noncompact oriented Riemannian manifold of bounded geometry, and D a Dirac operator of bounded geometry over it. D is equipped with a grading η , and it will be convenient to use the notations D^+ and D^- for the restrictions of D to the +1 and -1 eigenspaces of η . Suppose that M admits a regular exhaustion with corresponding fundamental class m and trace functional τ . Then the main theorem of [19] computes

$$\dim_{\tau}(\operatorname{Ind} D) = \langle \mathbf{I}(D), m \rangle;$$

it identifies a "real-valued index" of D with a "topological" invariant. The fundamental question studied here is: How does the number $\dim_{\tau}(\operatorname{Ind} D)$ relate to the kernel of D?

Recall from [19, 8.1] the equation

$$\dim_{\tau}(\operatorname{Ind} D) = \tau(\phi(D^{-}D^{+})) - \tau(\phi(D^{+}D^{-}))$$

where ϕ is any Schwartz-class function on \mathbb{R}^+ with $\phi(0) = 1$. If the manifold M were compact, one could argue as follows: D has discrete spectrum, hence there is a smooth ϕ of compact support such that $\phi(0) = 1$ and $\phi(\lambda) = 0$ for all nonzero eigenvalues λ of D^2 . Then $\phi(D^-D^+)$ is the projection P^+ onto the kernel of D^+ , and similarly $\phi(D^+D^-)$ is the corresponding projection P^- , and one gets

(0.1)
$$\dim_{\tau}(\operatorname{Ind} D) = \tau(P^+) - \tau(P^-),$$

Received November 4, 1985 and in revised form, November 25, 1986.