ERRATA AND ADDENDA

ALAN WEINSTEIN

A. B. Givental and P. Molino have pointed out to the author that Theorem 3.1 (The local structure of Poisson manifolds, J. Differential Geometry 18 (1983) 523-557) is incorrect; only the linearization of the transverse Poisson structure at $\mu \in \mathfrak{g}^*$ is in general isomorphic to the Lie-Poisson structure on \mathfrak{g}_{μ}^* . The error in the proof is that the linear functions x and y on \mathfrak{g}_{μ}^* were extended as linear functions on \mathfrak{g}^* rather than as functions whose hamiltonian vector fields were tangent to the complement V.

Givental gives counterexamples to Theorem 3.1; the simplest is to take

$$\mu = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

in $\mathfrak{SI}(3; \mathbf{R})^*$, which is identified with $\mathfrak{SI}(3; \mathbf{R})$ by the Killing form. In the transverse structure the common zero set of the Casimir functions vanishing at μ is a surface with an isolated singularity of type A_2 , while the corresponding set for \mathfrak{g}_{μ}^* is a pair of smooth surfaces intersecting along a curve.

Molino points out that Theorem 3.1 is true in the case where one can write $g = g_{\mu} \oplus m$ with $[g_{\mu}, m] \subseteq m$. He also observes that the proof of Corollary 3.3 (Duflo-Vergne) is still valid. On the other hand, were Theorem 3.1 true in general, it would have implied the converse to Duflo-Vergne: if g_{μ} is abelian then $\mu \in g^*$ is regular. In fact, this converse is true if g is semisimple (A. Medina) but is false in general (M. Duflo).

J. Conn has recently proven that every semisimple g is analytically nondegenerate (Ann. of Math. 119 (1984) 576-601) and that every g of compact type is C^{∞} nondegenerate (Ann. of Math. 121 (1985) 565-593).

The second identity on line 7 of p. 525 is obviously wrong. (P. Morrison noticed this first). It should read

$$\sum_{l} \left(c_{ijl} c_{lkm} + c_{jkl} c_{lim} + c_{kil} c_{ljm} \right) = 0.$$

University of California, Berkeley