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NONSTANDARD LORENTZ SPACE FORMS

WILLIAM M. GOLDMAN

In their recent paper [8], Kulharni and Raymond show that a closed

3-manifold which admits a complete Lorentz metric of constant curvature 1

(henceforth called a complete Lorentz structure) must be Seifert fibered over a

hyperbolic base. Furthermore on every such Seifert fibered 3-manifold with

nonzero Euler class they construct such a Lorentz metric. Moreover the

Lorentz structure they construct has a rather strong additional property, which

they call "standard": A Lorentz structure is standard if its causal double cover

possesses a timelike Killing vector field. Equivalently, it possesses a Rieman-

nian metric locally isometric to a left-invariant metric on SL(2, R). Kulkarni

and Raymond asked if every closed 3-dimensional Lorentz structure is stan-

dard. This paper provides a negative answer to this question (Theorem 1) and a

positive answer to the implicit question raised in [8, 7.1.1] (Theorem 3).

Theorem 1. Let M3 be a closed 3-manifold which admits a homogeneous

Lorentz structure and satisfies Hι{M\ R) Φ 0. Then there exists a nonstandard

complete Lorentz structure on M.

In [8] it is shown that the unit tangent bundle of a closed surface admits a

homogeneous Lorentz structure. Therefore we obtain:

Corollary 2. There exists a complete Lorentz structure on the unit tangent

bundle of any closed surface F of genus greater than one which is not standard.

The homogeneous Lorentz structures are all classified in [8]. A circle bundle

of Euler number j over a closed surface F, χ(F) < 0, has a homogeneous

structure if and only if j\χ(F) (an analogous statement holds when M has

singular fibers, i.e. when F is an orbifold).

We also show:

Theorem 3. Let M3 be a 3-manifold which admits a complete Lorentz

structure. Then M3 is not covered by a product F X Sι, Fa closed surface.

Theorem 3 implies that the Euler class of the Seifert fiber structure of M3 is

nonzero.
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