SPECTRAL INVARIANTS OF CONVEX PLANAR REGIONS

SHAHLA MARVIZI & RICHARD MELROSE

Table of contents

1.	Introduction	175
2.	Billiard ball map	179
3.	Interpolating Hamiltonian	81
4.	Integral invariants	184
5.	Length spectrum	187
6.	Poisson relation	190
7.	Spectral invariants	195
8.	Maximizing I_1	196
9.	Minimizing I_2	197

1. Introduction

The inverse spectral problem for planar regions was clearly formulated by M. Kac [9]. In this paper, a summary of which appears in [10], we discuss an approach to this problem, and some limited results, for strictly convex planar domains. The objective of inverse spectral theory is the extraction from the spectrum, say of the Dirichlet problem:

(1.1)
$$\begin{aligned} \Delta u &= \lambda^2 u \quad \text{in } \Omega \subset \mathbf{R}^2, \\ u \mid_{\partial \Omega} &= 0, \end{aligned}$$

of some geometric information about the domain Ω itself. The technique discussed by Kac relies on the fact that the trace of the associated heat equation

(1.2)
$$\tau(t) = \operatorname{tr}(\exp(-t\Delta_D)), \quad t > 0,$$

where Δ_D is an unbounded self-adjoint operator on $L^2(\Omega)$, is determined by the spectrum (always with multiplicity):

(1.3)
$$\tau(t) = \sum \exp(-\lambda^2 t).$$

Received May 16, 1982. The first author was supported in part by the NSF under Grant MCS 8108814, and the second under Grant MCS 8006521.