PROJECTIVE MAPPINGS AND DISTORTION THEOREMS

ZVI HAR'EL

1. Introduction

Distance- and volume-decreasing theorems have been investigated since Ahlfors [1] extended Schwarz's Lemma. In the complex domain, the results were distortion theorems for various holomorphic (see [9]) and even almostcomplex mappings [5]. In the real domain, the theorems were obtained for certain classes of harmonic mappings, mainly by Chern [2], Goldberg [2], [6], [7], T. Ishihara [7], Petridis [7] and the present author [6], [8].

Although the notion of a projective change of a linear connection is classical, the notion of a projective mapping has not been investigated until recently. Two different notions were investigated, a weaker one by Yano and S. Ishihara [14] and a stronger by Kobayashi. The former, discussed in §2, requires the preservation of paths, while the latter, discussed in $\S 4$, requires, in addition, the preservation of the projective parameters of Whitehead [12].

In a recent paper [10], Kobayashi showed that projective mappings of an interval into a Riemannian manifold whose Ricci curvature is negative and bounded away from zero are distance decreasing up to a constant. This is generalized in $\S 5$ for mappings of a complete Riemannian manifold whose Ricci curvature is bounded below. In particular, this is valid for the hyperbolic open ball, which is the n-dimensional analog of Kobayashi's interval.

For projective mappings in the sense of Yano, we prove in §3 a volume-decreasing theorem, in the equidimensional case, under the same curvature requirements as above. We also show that the two notions of a projective mapping agree if the mapping is a diffeomorphism.

The author would like to express his gratitude to Professors Kobayashi and Goldberg, for the valuable discussions he had with them.

2. Projective mappings and transformations

Let (M, ∇) and ($M^{\prime}, \nabla^{\prime}$) be differential manifolds with symmetric linear connections. A curve $\gamma: I \rightarrow M$ with velocity vector $\dot{\gamma}$ is mapped by a

[^0]
[^0]: Received, June 9, 1978.

