THE HOPF-RINOW THEOREM IN INFINITE DIMENSION

IVAR EKELAND

I. Statement of results

We begin by reviewing some essential features. By a *Riemannian manifold* M we understand a connected C^{∞} -manifold modelled on some Hilbert space H, such that the tangent space $TM_p \simeq H$ carries a scalar product $\langle \cdot, \cdot \rangle_p$ which is C^{∞} in $p \in M$ and defines on TM_p a norm $\|\cdot\|_p$ equivalent to the original norm of H.

If p and q are two points in M, a path from p to q is a continuous map $c: [0, 1] \to M$ such that c(0) = p and c(1) = q. The set of all piecewise C^{∞} paths from p to q will be denoted by \mathscr{C}_p^q . If $c \in \mathscr{C}_p^q$ is such a path, its *length* $L_q^q(c)$ is the real number defined by

(1.1)
$$L_p^q(c) = \int_0^1 \|\dot{c}(t)\|_{c(t)} dt \, .$$

The geodesic distance d on M is defined by

(1.2)
$$d(p,q) = \inf \{L_p^q(c) \mid c \in \mathcal{C}_p^q\}, \quad \forall p, q \in M.$$

It is compatible with the manifold topology of M. Any path $c \in \mathscr{C}_p^q$ such that $d(p,q) = L_p^q(c)$ and the speed $||\dot{c}||_c$ is constant will be called a *minimal geodesic*; it must be C^{∞} and satisfy the equation (where Γ denotes the Levi-Civita connection)

(1.3)
$$V_{\dot{e}(t)}\dot{c}(t) = 0$$
,

which means that $\dot{c}(t)$ is obtained from $\dot{c}(0) \in TM_p$ by parallel translation along c. Conversely, any solution c of (1.3) is called a geodesic. The manifold M will often be assumed to be complete for the metric d; this will imply that solutions of (1.3) are defined for all $t \in \mathbf{R}$, i.e., that geodesics can be indefinitely extended.

Throughout this paper, for $\delta > 0$ and $p \in M$, we shall use the following notations:

(1.4)
$$B_p^{\delta} = \{\xi \in TM_p | \|\xi\|_p < \delta\}, \qquad S_p^{\delta} = \{\xi \in TM_p | \|\xi\|_p = \delta\},$$

Communicated by R. S. Palais, November 10, 1976. Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.