J. DIFFERENTIAL GEOMETRY 13 (1978) 139-144

RIEMANNIAN SUBMERSIONS COMMUTING WITH THE LAPLACIAN

S. I. GOLDBERG & T. ISHIHARA

1. Introduction

Let *M* and *N* be smooth Riemannian manifolds. Let $\mathcal{\Delta}_{M}^{p} = d\delta + \delta d$: $\bigwedge^{p} (M) \to \bigwedge^{p} (M)$ denote the Laplace-Beltrami operator on the differential *p*-forms of *M*. Define the set

 $\Omega^{p}(M, N) = \{\varphi \colon M \to N | \varphi \text{ is a smooth surjective mapping with} \\ \operatorname{rank} \varphi_{*} \geq 1 \text{ and } \varphi^{*} \varDelta_{N}^{p} A = \varDelta_{M}^{p} \varphi^{*} A \text{ for all } A \in \bigwedge^{p} (N) \}$

of *p*th Laplacian-commuting mappings. If $\Omega^p(M, N)$ is empty, it is said to be trivial. The condition on the rank is not necessary in defining $\Omega^0(M, N)$ because any surjective mapping $\varphi: M \to N$ with $\varphi^* \Delta_N f = \Delta_M \varphi^* f$ for all smooth functions f on N satisfies rank $\varphi_* = n = \dim N$. In this paper, we ask for the mappings contained in $\Omega^p(M, N)$. Watson [4] showed that $\varphi: M \to N$ is contained in $\Omega^0(M, N)$ if and only if it is a harmonic Riemannian submersion. He also proved that the nontriviality of $\Omega^p(M, N), p \ge 0$, implies that the elements of $\Omega^p(M, N)$ are Riemannian submersions. We therefore ask for the Riemannian submersions which commute with the Laplacian. It is an immediate consequence of our main result that $\Omega^1(M, N) = \Omega^2(M, N) = \cdots = \Omega^n(M, N)$.

In § 2, the basic facts of a Riemannian submersion will be described, especially its structure tensor. Several relations between the curvature tensors of M and Nand the structure tensor are given in § 3. The set $\Omega^1(M, N)$ is studied in § 4, and in the last section the set $\Omega^p(M, N)$, $p \ge 2$, is examined.

2. Riemannian submersions

Let M (resp. N) be an m (resp. n)-dimensional manifold with Riemannian metric ds_M^2 (resp. ds_N^2), and let $\varphi: M \to N$ be a Riemannian submersion. Then we may assume n < m; for, if m = n, a Riemannian submersion (Riemannian covering) commutes with the Laplacian [4]. We choose local forms $\omega_1, \dots, \omega_m$ on M and $\theta_1, \dots, \theta_n$ on N such that $ds_M^2 = \Sigma \omega_a^2$, $ds_N^2 = \Sigma \theta_i^2$, and

(2.1)
$$\varphi^*(\theta_i) = \omega_i , \qquad i = 1, \cdots, n .$$

Communicated by K. Yano, July 7, 1976.