GENERALIZED SCALAR CURVATURES OF COHOMOLOGICAL EINSTEIN KAEHLER MANIFOLDS

KOICHI OGIUE

1. Introduction

In Riemannian geometry all elementary symmetric polynomials of eigenvalues of the Ricci tensor are geometric invariants. In particular, the one of degree 1 is called the scalar curvature.

In this paper, we shall study some properties of the geometric invariants for *cohomological Einstein* Kaehler manifolds. Let M be a Kaehler manifold with fundamental 2-form Φ and Ricci 2-form γ . We say that M is cohomologically Einsteinian if $[\gamma] = a \cdot [\Phi]$ for some constant a, where [*] denotes the cohomology class represented by *. It is well-known that the first Chern class $c_1(M)$ is represented by γ .

Let z_1, \dots, z_n be a local coordinate system in M, $g = \sum g_{\alpha\beta} dz_{\alpha} d\bar{z}_{\beta}$ be the Kaehler metric of M, and $S = \sum R_{\alpha\beta} dz_{\alpha} d\bar{z}_{\beta}$ be the Ricci tensor of M. Define n scalars ρ_1, \dots, ρ_n by

$$\frac{\det \left(g_{\alpha\bar{\beta}} + tR_{\alpha\bar{\beta}}\right)}{\det \left(g_{\alpha\bar{\beta}}\right)} = 1 + \sum_{k=1}^{n} \rho_k t^k ,$$

and denote the scalar curvature of M by ρ . Then it is easily seen that $\rho = 2\rho_1$, and is also clear that $\rho_n = \det (R_{\alpha\beta})/\det (g_{\alpha\beta})$.

We shall prove

Theorem 1. Let M be an n-dimensional compact cohomological Einstein Kaehler manifold. If $c_1(M) = a \cdot [\Phi]$, then

$$\int_{\mathcal{M}} \rho_k * 1 = (2\pi a)^k \binom{n}{k} \int_{\mathcal{M}} * 1 ,$$

where $\binom{n}{k}$ denotes the binomial coefficient, and *1 the volume element of M.

This results implies that the average of ρ_k , $\int_M \rho_k * 1 / \int_M *1$, does not depend on the metric too strongly.

Let $P_{n+p}(C)$ be an (n + p)-dimensional complex projective space with the Received January 25, 1974, and, in revised form, April 11, 1974.