CONFORMALITY OF RIEMANNIAN MANIFOLDS TO SPHERES

KRISHNA AMUR & V. S. HEGDE

1. Introduction

Let M be an orientable smooth Riemannian manifold of dimension n with Riemannian metric g_{ij} . Let ∇ be the covariant differentiation operator on M, and K_{hijk}, K_{ij}, r be the Riemann curvature tensor, Ricci curvature tensor, and scalar curvature tensor of M respectively. Let X denote the infinitesimal conformal transformation on M so that we have

(1.1)
$$(\mathscr{L}_x g)_{ij} = \nabla_i X_j + \nabla_j X_i = 2\rho g_{ij} ,$$

where ρ is a function, and \mathscr{L}_x denotes the Lie differentiation with respect to X. Assuming that $\mathscr{L}_x r = 0$ Yano, Obata, Hsiung-Mugridge, Hsiung-Stern (see [1], [2], [6], [8]) have studied the condition for a Riemannian *n*-manifold M to be conformal to an *n*-sphere. The purpose of this paper is to relax the condition $\mathscr{L}_x r = 0$ further, that is, to assume $\mathscr{L}_{D\rho}\mathscr{L}_x r = 0$, and to obtain conditions for M to be conformal to an *n*-sphere where $D\rho$ is the vector field associated with the 1-form $d\rho$. Towards this end we prove the following theorems.

Theorem 1.1. If a compact orientable smooth Riemannian manifold M of dimension n > 2 admitting an infinitesimal conformal transformation $X: \mathscr{L}_{xg} = 2\rho g, \rho \neq \text{constant with } \mathscr{L}_{D\rho}\mathscr{L}_{x}r = 0 \text{ satisfies } \int_{\mathcal{M}} \left(A_{ij}\rho^{i}\rho^{j} + \frac{\alpha}{n^{2}}\mathscr{L}_{x}\mathscr{L}_{D\rho}r\right)dv \geq 0$ where $A_{ij} = K_{ij} - (\alpha r/n)g_{ij}$ and $\alpha = 1$, then M is conformal to an *n*-sphere.

Theorem 1.2. Let M be an orientable smooth Riemannian manifold of dimension n > 2 admitting an infinitesimal conformal transformation X satisfying (1.1) such that $\rho \neq \text{constant}$, and $\mathscr{L}_{D\rho}\mathscr{L}_x r = 0$. Then M is conformal to an n-sphere if $\mathscr{L}_x\mathscr{L}_{D\rho}r \geq 0$ and $\mathscr{L}_x|G|^2 = 0$ where $G_{ij} = K_{ij} - (r/n)g_{ij}$.

Theorem 1.3. Let M be an orientable smooth Riemannian manifold of dimension n > 2 admitting an infinitesimal conformal transformation X satisfying (1.1) such that $\rho \neq \text{constant}$ and $\mathscr{L}_{D\rho}\mathscr{L}_x r = 0$. Then M is conformal to an n-sphere if $\mathscr{L}_x\mathscr{L}_{D\rho}r \geq 0$ and $\mathscr{L}_x|W|^2 = 0$ where W is a tensor defined in § 2.

Received June 23, 1973.