REDUCTION OF THE CODIMENSION OF AN ISOMETRIC IMMERSION

JOSEPH ERBACHER

0. Introduction

Let $\psi: M^{n} \rightarrow \bar{M}^{n+p}(\tilde{c})$ be an isometric immersion of a connected n-dimensional Riemannian manifold M^{n} into an ($n+p$)-dimensional Riemannian manifold $\overline{\boldsymbol{M}}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c}. When can we reduce the codimension of the immersion, i.e., when does there exist a proper totally geodesic submanifold N of $\bar{M}^{n+p}(\tilde{c})$ such that $\psi\left(M^{n}\right) \subset N$? We prove the following:

Theorem. If the first normal space $N_{1}(x)$ is invariant under parallel translation with respect to the connection in the normal bundle and l is the constant dimension of N_{1}, then there exists a totally geodesic submanifold N^{n+l} of $\bar{M}^{n+p}(\tilde{c})$ of dimension $n+l$ such that $\psi\left(M^{n}\right) \subset N^{n+l}$.

This theorem extends some results of Allendoerfer [2].

1. Notation and some formulas of Riemannian geometry

Let $\psi: M^{n} \rightarrow \bar{M}^{n+p}(\tilde{c})$ be as in the introduction. For all local formulas we may consider ψ as an imbedding and thus identify $x \in M^{n}$ with $\psi(x) \in \bar{M}^{n+p}$. The tangent space $T_{x}\left(M^{n}\right)$ is identified with a subspace of the tangent space $T_{x}\left(\bar{M}^{n+p}\right)$. The normal space T_{x}^{\perp} is the subspace of $T_{x}\left(\bar{M}^{n+p}\right)$ consisting of all $X \in T_{x}\left(\bar{M}^{n+p}\right)$ which are orthogonal to $T_{x}\left(M^{n}\right)$ with respect to the Riemannian metric g. Let ∇ (respectively $\tilde{\nabla}$) denote the covariant differentiation in M^{n} (respectively \bar{M}^{n+p}), and D the covariant differentiation in the normal bundle. We will refer to V as the tangential connection and D as the normal connection.

With each $\xi \in T_{x}^{\perp}$ is associated a linear transformation of $T_{x}\left(M^{n}\right)$ in the following way. Extend ξ to a normal vector field defined in a neighborhood of x and define $-A_{\xi} X$ to be the tangential component of $\tilde{V}_{x} \xi$ for $X \in T_{x}\left(M^{n}\right)$. $A_{\xi} X$ depends only on ξ at x and X. Given an orthonormal basis ξ_{1}, \cdots, ξ_{p} of $T_{\frac{1}{x}}^{\perp}$ we write $A_{\alpha}=A_{\xi_{\alpha}}$ and call the A_{α} 's the second fundamental forms associated with ξ_{1}, \cdots, ξ_{p}. If ξ_{1}, \cdots, ξ_{p} are now orthonormal normal vector fields in a neighborhood U of x, they determine normal connection forms $s_{\alpha \beta}$ in U by

$$
D_{X} \xi_{\alpha}=\sum_{\beta} s_{\alpha \beta}(X) \xi_{\beta}
$$

[^0]
[^0]: Received May 20, 1970. This paper is a part of the author's doctoral dissertation written under the direction of Professor K. Nomizu at Brown University. The research was partially supported by the National Science Foundation.

