AN ANALYTIC PROOF OF RIEMANN-ROCH-HIRZEBRUCH THEOREM FOR KAEHLER MANIFOLDS

V. K. PATODI

1. Introduction

Let X be a compact complex manifold of (complex) dimension n, and ξ a holomorphic vector bundle over X. We shall denote by $\Omega(\xi)$ the sheaf of germs of holomorphic sections of ξ , and by $H^i(X, \Omega(\xi))$ the *i*-th cohomology group of the space X with coefficients in the sheaf $\Omega(\xi)$. Then $H^i(X, \Omega(\xi))$ are finite dimensional vector spaces over the field C of complex numbers, and $H^i(X, \Omega(\xi)) = 0$ for i > n. Let dim $H^i(X, \Omega(\xi))$ denote the dimension of the vector space $H^i(X, \Omega(\xi))$, and $\chi(X, \Omega(\xi))$ be the Euler-Poincaré characteristic defined by the formula

$$\chi(X, \Omega(\xi)) = \sum_{i=0}^{n} (-1)^{i} \dim H^{i}(X, \Omega(\xi)) .$$

Let $\mathscr{T}(X)$ be the Todd class of the complex tangent boundle T(X) of X, and ch (ξ) the Chern character of the holomorphic vector bundle ξ . Then the Riemann-Roch-Hirzebruch theorem can be stated as follows.

Theorem 1.1. The Euler-Poincaré characteristic $\chi(X, \Omega(\xi))$ can be expressed in terms of ch (ξ) and $\mathcal{T}(X)$:

(1.1)
$$\chi(X, \Omega(\xi)) = [\operatorname{ch}(\xi)\mathcal{F}(X)]_{2n}[X] .$$

Formula (1.1) can be interpreted as follows: ch (ξ) and $\mathcal{T}(X)$ are elements of $H^*(X, Z) \otimes \mathbf{Q}$. If the multiplication is considered as the cup product, then ch $(\xi)\mathcal{T}(X)$ defines an element of $H^*(X, Z) \otimes \mathbf{Q}$, and hence its 2*n*-th component defines an element of $H^{2n}(X, Z) \otimes \mathbf{Q}$. The value of this element on the 2*n*-dimensional cycle of X determined by the natural orientation is equal to $\chi(X, \Omega(\xi))$.

In this paper we shall give an analytic proof of this theorem under the assumption that X is a Kaehler manifold. We start with the following observations. Let η denote the complex vector bundle $\wedge(T^*(X)) \otimes C$, $T^*(X)$ being the cotangent bundle of X. Then η has a canonical direct sum decomposition

Communicated by B. Kostant, May 5, 1970.