J. DIFFERENTIAL GEOMETRY 4 (1970) 1-4

POSITIVELY CURVED *n*-MANIFOLDS IN R^{n+2}

ALAN WEINSTEIN

Introduction

In view of the difficulty of classifying *all* compact Riemannian manifolds with strictly positive sectional curvature, we make the additional hypothesis that the manifold is isometrically immersed in a Euclidean space with codimension 2. In § 1 we prove a theorem in what B. O'Neill has called "pointwise differential geometry" (i.e. linear algebra). This theorem is applied in § 2 to obtain results about the manifolds specified in the title. For instance, we show that a metric of positive curvature on $S^2 \times S^2$ cannot be induced by an immersion in \mathbb{R}^6 .

1. An algebraic theorem

Let V and W be real vector spaces of finite dimensions n and p respectively, and $B: V \times V \to W$ a symmetric bilinear form on V with values in W. Suppose $n \ge 2$ and W has an inner product \langle , \rangle . Define the associated curvature form $R_B: \Lambda^2 V \times \Lambda^2 V \to R$ by

$$R_B(x \wedge y, z \wedge w) = \langle B(x, z), B(y, w) \rangle - \langle B(x, w), B(z, y) \rangle.$$

 R_B is again symmetric, and is positive definite iff $R_B(\omega, \omega) > 0$ whenever $\omega \neq 0$. We say that R_B has positive sectional values iff $R_B(x \land y, x \land y) > 0$ whenever $x \land y \neq 0$.

Consider the following conditions on B:

(a) There exists an orthonormal basis $\{e_1, \dots, e_p\}$ for W such that the real-valued forms on V defined by $(x, y) \mapsto \langle B(x, y), e_i \rangle$ are all positive definite.

(b) R_B is positive definite.

(c) R_B has positive sectional values.

Theorem 1. (a) \Rightarrow (b) \Rightarrow (c). If p = 2, then (c) \Rightarrow (a). In fact, let p = 2and $\mathscr{P} = \{B | R_B \text{ has positive sectional values}\}$. Then there are continuous functions e_1 and e_2 from \mathscr{P} to W, canonically determined by an orientation of W, such that for each $B \in \mathscr{P}, \{e_1(B), e_2(B)\}$ is an orthonormal frame for W, and the forms $(x, y) \mapsto \langle B(x, y), e_i(B) \rangle$ are both positive definite.

Communicated by W. P. A. Klingenberg, January 17, 1969.