SOME DECOMPOSITIONS OF THE SPACE OF SYMMETRIC TENSORS ON
 A RIEMANNIAN MANIFOLD

M. BERGER \& D. EBIN

1. Introduction

In this article we consider a compact C^{∞} manifold M and endow it with a riemannian structure g. For such a riemannian manifold (M, g), the space A^{p} of exterior differential forms carries an elliptic operator and the de Rham laplacian Δ, and has an orthogonal decomposition

$$
\begin{equation*}
A^{p}=\operatorname{ker} \Delta \oplus d A^{p-1} \oplus \delta A^{p+1} \tag{1.1}
\end{equation*}
$$

orthogonal with respect to the global scalar product on A^{p}. Moreover the dimension of ker Δ is equal to the p-th Betti number of M, thanks to de Rham's theorem.

The simplest space of tensors to consider, besides the A^{p} 's, is the space S^{2} of symmetric bilinear differential forms on M. It is natural to look for a decomposition of S^{2} like $(1,1)$. In this article we give all the reasonable decompositions of S^{2}, which we are aware of. Unhappily we have no essential applications of them, because of the lack of some kind of a de Rham theorem, connecting topological invariants of M with the dimension of the kernel of the elliptic operators considered on S^{2}. However we think it is worthwhile to list and prove these decompositions, hoping the reader will find interest in the problems and questions which naturally arise.

After fixing notations in $\S 2$ we give in $\S \S 3$ and 4 the decomposition (3.1), which essentially yields the subspace $\delta^{-1}(0)$ of S^{2} as the tangent space at g of the space $\mathscr{M} / \mathscr{D}$ of classes of riemannian structures on M under diffeomorphisms. In $\S 5$ we give two decompositions for manifolds of constant scalar curvature which are naturally associated to deformations of the scalar curvature. One of these is due to L . Nirenberg. $\S 6$ lists four elliptic operators on S^{2}; in $\S 6 . \mathrm{c}$ an application is made to minimal surfaces; Corollary 6.2 was suggested to us by J. Simons. $\S \S 7$ and 8 are concerned with Einstein manifolds. As an application of the decomposition (3.1) of $\S 3$, we find that the space of Einstein

[^0]
[^0]: Communicated by L. Nirenberg, December 5, 1968. The work of the first author was done under NSF grant GP-8623, and that of the second author was supported by NSF post-doctoral fellowship.

