HOMOGENEOUS SPACES DEFINED BY LIE GROUP AUTOMORPHISMS. II

JOSEPH A. WOLF & ALFRED GRAY

7. Noncompact coset spaces defined by automorphisms of order 3

We will drop the compactness hypothesis on G in the results of $\S 6$, doing this in such a way that problems can be reduced to the compact case. This involves the notions of reductive Lie groups and algebras and Cartan involutions.

Let \mathfrak{G} be a Lie algebra. A subalgebra $\mathfrak{R} \subset \mathfrak{G}$ is called a *reductive subalgebra* if the representation $ad_{\mathfrak{G}|\mathfrak{R}}$ of \mathfrak{R} on \mathfrak{G} is fully reducible. \mathfrak{G} is called *reductive* if it is a reductive subalgebra of itself, i.e. if its adjoint representation is fully reducible. It is standard ([11, Theorem 12.1.2, p. 371]) that the following conditions are equivalent:

(7.1a) S is reductive.

(7.1b) S has a faithful fully reducible linear representation, and

(7.1c) $\mathfrak{G} = \mathfrak{G}' \oplus \mathfrak{F}$, where the derived algebra $\mathfrak{G}' = [\mathfrak{G}, \mathfrak{G}]$ is a semisimple ideal (called the "semisimple part") and the center \mathfrak{F} of \mathfrak{G} is an abelian ideal.

Let $\mathfrak{G} = \mathfrak{G}' \oplus \mathfrak{Z}$ be a reductive Lie algebra. An automorphism σ of \mathfrak{G} is called a *Cartan involution* if it has the properties (i) $\sigma^2 = 1$ and (ii) the fixed point set \mathfrak{G}'^{σ} of $\sigma|_{\mathfrak{G}'}$ is a maximal compactly embedded subalgebra of \mathfrak{G}' . The whole point is the fact ([11, Theorem 12.1.4, p. 372]) that

(7.2) Let \Re be a subalgebra of a reductive Lie algebra \Im . Then \Re is reductive in \Im if and only if there is a Cartan involution σ of \Im such that $\sigma(\Re) = \Re$.

Let G be a Lie group. We say that G is reductive if its Lie algebra \mathfrak{G} is reductive. Let K be a Lie subgroup of G. We say that K is a reductive subgroup if its Lie algebra \mathfrak{R} is a reductive subalgebra of \mathfrak{G} . Let σ be an automorphism of G. We say that σ is a Cartan involution of G if σ induces a Cartan involution of \mathfrak{G} .

Let G be a reductive Lie group, and K a closed reductive subgroup such that G acts effectively on X = G/K. Choose a Cartan involution σ of \mathfrak{G} which preserves \mathfrak{R} , and consider the decomposition into (± 1) -einspaces of σ :

Received August 29, 1967.