THE MODULI SPACE OF HYPERBOLIC CONE STRUCTURES

QING ZHOU

Introduction

A topological cone manifold is a manifold together with a link each of whose component has a cone angle attached. If each cone angle is of the form $2 \pi / n$, for some integer n, the cone manifold becomes an orbifold. Unlike an orbifold, the cone manifold is not a natural concept, but it turns out to be very important in the study of geometrization of orbifolds.

In this paper, we will consider 3-dimensional geometric cone structures. The main result in this paper is an existence and uniqueness theorem for 3-dimensional hyperbolic cone structures.

Theorem A. Let Σ be a hyperbolic link with m components in a 3-dimensional manifold X. Then the moduli space of marked hyperbolic cone structures on the pair (X, Σ) with all cone angles less than $2 \pi / 3$ is an m-dimensional open cube $(0,2 \pi / 3)^{m}$, parameterized naturally by the m cone angles.

The uniqueness part of Theorem A is an analogue of Mostow's rigidity theorem. Namely if we have two hyperbolic cone structures C_{1} and C_{2} with cone angles less than $2 \pi / 3$, then C_{1} and C_{2} are isometric if and only if there is a homeomorphism between $\left(X_{1}, \Sigma_{1}\right)$ and $\left(X_{2}, \Sigma_{2}\right)$ so that the corresponding cone angles are the same. This rigidity theorem has been improved by Kojima to hyperbolic cone manifolds with cone

[^0]
[^0]: Received November 11, 1997, and, in revised form, September 16, 1998. The project is partially supported by grants of NNSFC, FEYUT of SEDC and HYTEF.

