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Abstract

Let M be a compact Riemannian manifold of dimension n > 2.
The k-curvature, for k = 1, 2, . . . , n, is defined as the k-th ele-
mentary symmetric polynomial of the eigenvalues of the Schouten
tenser. The k-Yamabe problem is to prove the existence of a con-
formal metric whose k-curvature is a constant. When k = 1, it re-
duces to the well-known Yamabe problem. Under the assumption
that the metric is admissible, the existence of solutions is known
for the case k = 2, n = 4, for locally conformally flat manifolds
and for the cases k > n/2. In this paper we prove the solvability
of the k-Yamabe problem in the remaining cases k ≤ n/2, under
the hypothesis that the problem is variational. This includes all
of the cases k = 2 as well as the locally conformally flat case.

1. Introduction

In recent years the Yamabe problem for the k-curvature of the
Schouten tensor, or simply the k-Yamabe problem, has been extensively
studied. Let (M, g0) be a compact Riemannian manifold of dimension
n > 2 and denote by ‘Ric’ and R respectively the Ricci tensor and the
scalar curvature. The k-Yamabe problem is to prove the existence of a

conformal metric g = gv = v
4

n−2 g0 that solves the equation

(1.1) σk(λ(Ag)) = 1 on M,

where 1 ≤ k ≤ n is an integer, and λ = (λ1, . . . , λn) are the eigenvalues
of Ag with respect to the metric g. As usual, we denote by

(1.2) Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)

the Schouten tensor, and by

(1.3) σk(λ) =
∑

i1<···<ik

λi1 · · ·λik
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