J. DIFFERENTIAL GEOMETRY 75 (2007) 273-302

CHARACTERISTIC CLASSES OF FOLIATED SURFACE BUNDLES WITH AREA-PRESERVING HOLONOMY

D. Kotschick & S. Morita

Abstract

Making use of the *extended* flux homomorphism defined in [13] on the group $\operatorname{Symp} \Sigma_g$ of symplectomorphisms of a closed oriented surface Σ_g of genus $g \geq 2$, we introduce new characteristic classes of foliated surface bundles with symplectic, equivalently area-preserving, total holonomy. These characteristic classes are stable with respect to g and we show that they are highly nontrivial. We also prove that the second homology of the group Ham Σ_g of Hamiltonian symplectomorphisms of Σ_g , equipped with the discrete topology, is very large for all $g \geq 2$.

1. Introduction

In this paper we study the homology of symplectomorphism groups of surfaces considered as discrete groups. We shall prove that certain homology groups are highly non-trivial by constructing characteristic classes of foliated surface bundles with area-preserving holonomy, and proving non-vanishing results for them.

Let Σ_g be a closed oriented surface of genus $g \geq 2$, and $\operatorname{Diff}_+ \Sigma_g$ its group of orientation preserving selfdiffeomorphisms. We fix an area form ω on Σ_g , which, for dimension reasons, we can also think of as a symplectic form. We denote by $\operatorname{Symp} \Sigma_g$ the subgroup of $\operatorname{Diff}_+ \Sigma_g$ preserving the form ω . The classifying space $\operatorname{BSymp}^{\delta} \Sigma_g$ for the group $\operatorname{Symp} \Sigma_g$ with the *discrete* topology is an Eilenberg-MacLane space $K(\operatorname{Symp}^{\delta} \Sigma_g, 1)$ which classifies foliated Σ_g -bundles with area-preserving total holonomy groups.

Our construction of characteristic classes proceeds as follows. Let $\operatorname{Symp}_0 \Sigma_g$ be the identity component of $\operatorname{Symp} \Sigma_g$. A well-known theorem of Moser [24] concerning volume-preserving diffeomorphisms implies that the quotient $\operatorname{Symp} \Sigma_g / \operatorname{Symp}_0 \Sigma_g$ can be naturally identified with the mapping class group \mathcal{M}_g , so that we have an extension

 $1 \longrightarrow \operatorname{Symp}_0 \Sigma_g \longrightarrow \operatorname{Symp} \Sigma_g \xrightarrow{p} \mathcal{M}_g \longrightarrow 1.$

The first author is grateful to the *Deutsche Forschungsgemeinschaft* for support of this work. The second author is partially supported by JSPS Grant 16204005.

Received 09/28/2004.