1. Introduction

In Riemannian geometry all elementary symmetric polynomials of eigenvalues of the Ricci tensor are geometric invariants. In particular, the one of degree 1 is called the scalar curvature.

In this paper, we shall study some properties of the geometric invariants for cohomological Einstein Kaehler manifolds. Let \(M \) be a Kaehler manifold with fundamental 2-form \(\Phi \) and Ricci 2-form \(\gamma \). We say that \(M \) is cohomologically Einsteinian if \([\gamma] = a \cdot [\Phi] \) for some constant \(a \), where \([\ast] \) denotes the cohomology class represented by \(\ast \). It is well-known that the first Chern class \(c_1(M) \) is represented by \(\gamma \).

Let \(z_1, \ldots, z_n \) be a local coordinate system in \(M \), \(g = \sum g_{ab} dz_a d\bar{z}_b \) be the Kaehler metric of \(M \), and \(S = \sum R_{ab} dz_a d\bar{z}_b \) be the Ricci tensor of \(M \). Define \(n \) scalars \(\rho_1, \ldots, \rho_n \) by

\[
\frac{\det (g_{ab} + tR_{ab})}{\det (g_{ab})} = 1 + \sum_{k=1}^{n} \rho_k t^k,
\]

and denote the scalar curvature of \(M \) by \(\rho \). Then it is easily seen that \(\rho = 2\rho_1 \), and is also clear that \(\rho_n = \det (R_{ab}) / \det (g_{ab}) \).

We shall prove

Theorem 1. Let \(M \) be an \(n \)-dimensional compact cohomological Einstein Kaehler manifold. If \(c_1(M) = a \cdot [\Phi] \), then

\[
\int_M \rho_k * 1 = (2\pi a)^k \binom{n}{k} \int_M * 1,
\]

where \(\binom{n}{k} \) denotes the binomial coefficient, and \(*1 \) the volume element of \(M \).

This results implies that the average of \(\rho_k \), \(\int_M \rho_k * 1 / \int_M * 1 \), does not depend on the metric too strongly.

Let \(P_{n+p}(C) \) be an \((n + p) \)-dimensional complex projective space with the

Received January 25, 1974, and, in revised form, April 11, 1974.