Construction of Number Fields with Prescribed l-class Groups

Osamu YAHAGI

Waseda University

Let G be a finite abelian l-group, where l is a prime number, and k be an arbitrary number field. The purpose of this paper is to show that for each prime number l which does not divide the class number of k, there exist infinitely many algebraic extensions of k whose l-class groups are isomorphic to G (cf. Theorem and its Corollary). F. Gerth III [1] solved this problem under the conditions that G is any finite elementary abelian l-group and k is the field \boldsymbol{Q} of rational numbers. We extend his result to the general case where the group G is any finite abelian l-group.

§1. Preliminaries.

Throughout this paper, l will denote a fixed prime number and k will denote a number field whose class number is prime to l (by a number field we shall always mean a finite extension of the field \boldsymbol{Q} of rational numbers). For an arbitrary number field L, let S_{L} and E_{L} denote the l-class group of L (i.e., the Sylow l-subgroup of the ideal class group of L) and the group of units in L, respectively. For a Galois extension M / L of finite degree, $G(M / L)$ denotes its Galois group and [$\because 3, M / L$] denotes the Frobenius symbol for a prime ideal \mathfrak{F} of M in M / L. Especially, if M / L is an abelian extension, ($a, M / L$) denotes the Artin symbol for an ideal \mathfrak{a} of L in M / L. For a finite abelian group \bar{G} and a natural number n, we shall denote by $|\bar{G}|$ its order and put $\bar{G}^{n}=$ $\left\{g^{n} ; g \in \bar{G}\right\}$. Let $\boldsymbol{Z} / l^{n} Z$ be the cyclic group of order l^{n} and ζ_{n} a primitive n-th root of unity. Furthermore, we use the following notations:
$h=h_{k}$: the class number of k;
\mathfrak{O} : the ring of integers of k :
$(\mathcal{O} / \mathfrak{M})^{\times}$: the multiplicative group of the residue class ring $\mathcal{O} / \mathfrak{M}$, where \mathfrak{M} is an integral ideal of k;
$k(n)=k\left(\left\{\zeta_{l^{n+\delta}}, l^{n} \sqrt{\varepsilon_{i}} ; 1 \leqq i \leqq r\right\}\right)$, where l^{δ} is the order of the group of l Received March 4, 1978

