More on the Schur Index and the Order and Exponent of a Finite Group

Toshihiko YAMADA

Tokyo Metropolitan University
Let G be a finite group and K a field of characteristic 0 . Let χ be an absolutely irreducible character of G and let $m_{K}(\chi)$ denote the Schur index of χ over K. In Fein and Yamada [1], we gave a theorem which relates $m_{Q}(\chi)$ to the order and exponent of G, where \boldsymbol{Q} is the rational field. In this paper, we will give similar results for the case $K=\boldsymbol{Q}_{l}$, the l-adic numbers, where l is a prime. These results are easily derived from the formula of index of an l-adic cyclotomic algebra, which was obtained by the author [4], [5].

For the rest of the paper, k is a cyclotomic extension of \boldsymbol{Q}_{l}, i.e., k is a subfield of a cyclotomic field $\boldsymbol{Q}_{l}\left(\zeta^{\prime}\right)$, where ζ^{\prime} is a root of unity. For a natural number n, ζ_{n} denotes a primitive n-th root of unity. A cyclotomic algebra over k is a crossed product

$$
\begin{gather*}
B=(\beta, k(\zeta) / k)=\sum_{\sigma \in \mathscr{\mathscr { C }}} k(\zeta) u_{\sigma}, \quad\left(u_{1}=1\right), \tag{1}\\
u_{\sigma} x=\sigma(x) u_{\sigma} \quad(x \in k(\zeta)), \quad u_{o} u_{\tau}=\beta(\sigma, \tau) u_{\sigma \tau}, \quad(\sigma, \tau \in \mathscr{G}), \tag{2}
\end{gather*}
$$

where ζ is a root of unity, \mathscr{G} is the Galois group of $k(\zeta)$ over k, and β is a factor set whose values are roots of unity in $k(\zeta)$. Put $L=k(\zeta)$. Let $\varepsilon(L)$ denote the group of roots of unity contained in L. Let $\varepsilon^{\prime}(L)$ (respectively, $\varepsilon_{l}(L)$) denote the subgroup of $\varepsilon(L)$ consisting of those roots of unity in L whose orders are relatively prime to l (respectively, powers of l). We have $\varepsilon(L)=\varepsilon^{\prime}(L) \times \varepsilon_{l}(L)$. Let

$$
\begin{equation*}
\beta(\sigma, \tau)=\alpha(\sigma, \tau) \gamma(\sigma, \tau), \quad \alpha(\sigma, \tau) \in \varepsilon^{\prime}(L), \quad \gamma(\sigma, \tau) \in \varepsilon_{\ell}(L) . \tag{3}
\end{equation*}
$$

Suppose that l is an odd prime. Let $\langle\theta\rangle$ denote the inertia group and ϕ a Frobenius automorphism of the extension $k(\zeta) / k$. The order e of θ has the form $e=l^{t} e^{\prime}, e^{\prime} \mid l-1$. Let f denote the residue class degree of the extension k / \boldsymbol{Q}_{l}, so $\zeta_{l} f_{-1} \in k$.

