TOKYO J. MATH. VOL. 1, NO. 2, 1978

More on the Schur Index and the Order and Exponent of a Finite Group

Toshihiko YAMADA

Tokyo Metropolitan University

Let G be a finite group and K a field of characteristic 0. Let χ be an absolutely irreducible character of G and let $m_K(\chi)$ denote the Schur index of χ over K. In Fein and Yamada [1], we gave a theorem which relates $m_Q(\chi)$ to the order and exponent of G, where Q is the rational field. In this paper, we will give similar results for the case $K=Q_l$, the *l*-adic numbers, where *l* is a prime. These results are easily derived from the formula of index of an *l*-adic cyclotomic algebra, which was obtained by the author [4], [5].

For the rest of the paper, k is a cyclotomic extension of Q_i , i.e., k is a subfield of a cyclotomic field $Q_i(\zeta')$, where ζ' is a root of unity. For a natural number n, ζ_n denotes a primitive *n*-th root of unity. A cyclotomic algebra over k is a crossed product

(1)
$$B = (\beta, k(\zeta)/k) = \sum_{\sigma \in \mathscr{G}} k(\zeta) u_{\sigma}, \quad (u_1 = 1),$$

$$(2) u_{\sigma}x = \sigma(x)u_{\sigma} \quad (x \in k(\zeta)), \quad u_{\sigma}u_{\tau} = \beta(\sigma, \tau)u_{\sigma\tau}, \quad (\sigma, \tau \in \mathcal{G}),$$

where ζ is a root of unity, \mathscr{G} is the Galois group of $k(\zeta)$ over k, and β is a factor set whose values are roots of unity in $k(\zeta)$. Put $L = k(\zeta)$. Let $\varepsilon(L)$ denote the group of roots of unity contained in L. Let $\varepsilon'(L)$ (respectively, $\varepsilon_l(L)$) denote the subgroup of $\varepsilon(L)$ consisting of those roots of unity in L whose orders are relatively prime to l (respectively, powers of l). We have $\varepsilon(L) = \varepsilon'(L) \times \varepsilon_l(L)$. Let

$$(3) \qquad \beta(\sigma, \tau) = \alpha(\sigma, \tau)\gamma(\sigma, \tau) , \quad \alpha(\sigma, \tau) \in \varepsilon'(L) , \quad \gamma(\sigma, \tau) \in \varepsilon_l(L) .$$

Suppose that l is an odd prime. Let $\langle \theta \rangle$ denote the inertia group and ϕ a Frobenius automorphism of the extension $k(\zeta)/k$. The order eof θ has the form $e = l^{i}e'$, e' | l - 1. Let f denote the residue class degree of the extension k/Q_{l} , so $\zeta_{l}r_{-1} \in k$.

Received February 11, 1978