Analytic Functionals on the Lie Sphere

Mitsuo MORIMOTO

Sophia University

Introduction

Suppose $S^1 = \{z \in C; |z| = 1\}$ is the unit circle. Let us denote by $L^2(S^1)$ the Hilbert space of square integrable functions on S^1 equipped with the inner product $(f, g)_{L^2(S^1)} = (f, \overline{g})_{S^1}$, where $(,)_{S^1}$ is the bilinear form defined as follows:

$$(f,\,g)_{S^1} \! = \! rac{1}{2\pi} \! \int_0^{2\pi} f(e^{i heta}) g(e^{i heta}) d heta \; .$$

Let us denote by $\mathcal{H}^{(m)}(S^1)$ the one dimensional subspace of $L^2(S^1)$ spanned by the exponential function $e^{im\theta}$. Then we have the direct sum decomposition:

$$L^2(S^1) = \bigoplus_{m \in \mathbb{Z}} \mathscr{H}^{(m)}(S^1)$$

and the orthogonal projection of $L^2(S^1)$ onto $\mathscr{H}^{(m)}(S^1)$ is given by

$$(0.3) f(e^{i\theta}) \longmapsto c_m e^{im\theta},$$

where

$$c_m = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-im\theta} d\theta$$

is the m-th Fourier coefficient of f.

More generally, suppose S^{n-1} is the n-1 dimensional unit sphere. $d\Omega_n$ denotes the invariant measure on S^{n-1} and Ω_n is the volume of S^{n-1} . Denote by $L^2(S^{n-1})$ the Hilbert space of square integrable functions on S^{n-1} equipped with the inner product $(f, g)_{L^2(S^{n-1})} = (f, \overline{g})_{S^{n-1}}$, where $(,)_{S^{n-1}}$ is the bilinear form defined as follows:

$$(0.5) (f, g)_{S^{n-1}} = \frac{1}{\Omega_n} \int_{S^{n-1}} f(\omega) g(\omega) d\Omega_n(\omega) .$$

If we denote by $\mathcal{H}^k(S^{n-1})$ the space of spherical harmonics of degree k, Received November 30, 1979