Токуо J. Матн. Vol. 5, No. 2, 1982

Moduli Space of Polarized del Pezzo Surfaces and its Compactification

Shihoko ISHII

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

A non-singular rational projective surface X over an algebraically closed field k is called a del Pezzo surface if the inverse of the canonical sheaf ω_x^{-1} is ample. It is called a del Pezzo surface of degree d if ω_x^{-1} . $\omega_x^{-1}=d$. It is known that the degree of a del Pezzo surface is at most 9 and the surface is isomorphic to P^2 if d=9, $P^1 \times P^1$ or F_1 if d=8, the image of P^2 under a monoidal transformation with center (9-d)-closed points in general position (cf. Definition 1) if $1 \le d \le 7$ ([2]). Let X be a del Pezzo surface of degree $d \le 7$ and $f: X \to P^2$ be a monoidal transformation of P^2 with center (9-d)-points in general position. We call the sheaf $f^* \mathcal{O}_{P^2}(1)$ a contraction sheaf on X.

In this article we first construct the moduli space of del Pezzo surfaces of degree d ($1 \le d \le 7$) together with a contraction sheaf, and next construct its compactification in the sense of Definition 7.

In §1, we realize the moduli space of del Pezzo surfaces of degree $d(1 \le d \le 7)$ as the geometric quotient by PGL(2) of the open subspace U_d of $\operatorname{Sym}^{9-d} P^2$, where U_d consists of the points which represent (9-d)-points in general position in P^2 .

In §2, to construct a "good" compactification of our moduli space, we take a blowing up of the subspace containing U_d with the center outside of U_d and next take its universal categorical quotient. Then we see that a point on the boundary corresponds to an irreducible reduced surface with possible A_1 -singularities, which is isomorphic to the image of monoidal transformation of P^2 with the center (9-d)-points allowing at most double points, where double point means a subscheme defined by an maximal primary ideal \mathscr{I} in \mathcal{O}_{P^2} such that $\dim_k \mathcal{O}_{P^2}/\mathscr{I} = 2$ as a k-vector space.

Received February 14, 1981