Moduli Space of Polarized del Pezzo Surfaces and its Compactification

Shihoko ISHII
Tokyo Metropolitan University
(Communicated by K. Ogiue)

Introduction

A non-singular rational projective surface X over an algebraically closed field k is called a del Pezzo surface if the inverse of the canonical sheaf ω_{x}^{-1} is ample. It is called a del Pezzo surface of degree d if ω_{x}^{-1}. $\omega_{\bar{x}}^{-1}=d$. It is known that the degree of a del Pezzo surface is at most 9 and the surface is isomorphic to P^{2} if $d=9, P^{1} \times P^{1}$ or F_{1} if $d=8$, the image of \boldsymbol{P}^{2} under a monoidal transformation with center ($9-d$)-closed points in general position (cf. Definition 1) if $1 \leqq d \leqq 7$ ([2]). Let X be a del Pezzo surface of degree $d \leqq 7$ and $f: X \rightarrow \boldsymbol{P}^{2}$ be a monoidal transformation of P^{2} with center $(9-d)$-points in general position. We call the sheaf $f^{*} \mathcal{O}_{P^{2}}(1)$ a contraction sheaf on X.

In this article we first construct the moduli space of del Pezzo surfaces of degree $d(1 \leqq d \leqq 7)$ together with a contraction sheaf, and next construct its compactification in the sense of Definition 7.

In §1, we realize the moduli space of del Pezzo surfaces of degree $d(1 \leqq d \leqq 7)$ as the geometric quotient by $P G L(2)$ of the open subspace U_{d} of $\operatorname{Sym}^{9-d} \boldsymbol{P}^{2}$, where U_{d} consists of the points which represent ($9-d$)points in general position in $\boldsymbol{P}^{\mathbf{2}}$.

In §2, to construct a "good" compactification of our moduli space, we take a blowing up of the subspace containing U_{d} with the center outside of U_{d} and next take its universal categorical quotient. Then we see that a point on the boundary corresponds to an irreducible reduced surface with possible A_{1}-singularities, which is isomorphic to the image of monoidal transformation of P^{2} with the center ($9-d$)-points allowing at most double points, where double point means a subscheme defined by an maximal primary ideal $\mathscr{\mathscr { F }}$ in $\mathcal{O}_{P^{2}}$ such that $\operatorname{dim}_{k} \mathcal{O}_{P^{2}} / \mathscr{F}=2$ as a k-vector space.

