# On Normal Integral Bases 

Fuminori KAWAMOTO<br>Gakushuin University<br>(Communicated by T. Mitsui)

## Introduction

Let $k$ be a number field, and $K / k$ a finite Galois extension with Galois group $G$. Let $\mathfrak{o}_{k}$ and $\mathfrak{o}_{K}$ be the rings of integers in $k$ and $K$. We denote by $\mathrm{o}_{k} G$ the group ring of $G$ over $\mathrm{o}_{k}$. $\mathrm{o}_{K}$ can be regarded as an $\mathrm{o}_{k} G$-module by the action $r \cdot \alpha=\sum_{s \in G} a_{s} s \alpha$ for $\alpha \in \mathfrak{o}_{K}, r=\sum_{s \in G} a_{s} s \in \mathfrak{o}_{k} G$. These notations will be used throughout this paper. $K / k$ is said to have a normal integral basis (abbr. n.i.b.) when there is an element $\alpha \in \mathfrak{o}_{K}$ such that $\{s \alpha\}_{s \in G}$ is a relative integral basis of $K / k$, and $\alpha$ is called a generator of this basis. It is known that a finite Galois extension with n.i.b. is tamely ramified ([4], Chapter 9, Theorem (1, 2)).

In case where $k$ is the field $\boldsymbol{Q}$ of rational numbers, every tamely ramified abelian field has an n.i.b. (Hilbert-Speiser), so that when $k=\boldsymbol{Q}$ and $G$ is abelian, $K / k$ has an n.i.b. if and only if $K / k$ is tamely ramified ([4], Chapter 9, Theorem (3, 4)). Furthermore, Fröhlich [2] has given a necessary and sufficient condition for $K / k$ to have an n.i.b., when $K / k$ is a Kummer extension. On the other hand, Okutsu [8] has shown that when $k=\boldsymbol{Q}\left(\zeta_{l}\right), \zeta_{l}=\exp (2 \pi i / l), l$ : odd prime, and $K=k(\sqrt[l]{a}), a \in Z, K / k$ has always a relative integral basis and given an explicit form of this basis. After preparations in $\S 1$, giving in particular a more precise form to the results of [2], we shall apply them in §2 to obtain a necessary and sufficient condition for $K / k$ to have an n.i.b. for the case where $k$ and $K$ are as in [8]. We shall also give explicitly a generator of n.i.b. when this exists. In the final §3, we shall construct many examples of normal extensions $K / k$ with n.i.b.'s where $k \neq \boldsymbol{Q}$, and $K / k$ are tamely ramified. We shall also mention an example of such $K / k$ without n.i.b..

Acknowledgement: The author wishes to thank Dr. K. Okutsu for his kind advice and encouragement. He also wishes to thank Mr. S. Nakano for his kind advice.

