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Introduction

In this paper, we will consider a class of piecewise linear transforma-
tions defined on the unit interval $[0,1]$ . We will show that under some
suitable conditions the transformations belonging to this class exhibit
mixing properties, and we derive estimates for the decay rate of corre-
lation for them. Specifically, we will prove:

THEOREM 0-1. Let $F$ be a transformation on the unit interval $[0,1]$

satisfying conditions i), ii), iii) given in \S 1. Suppose that the infimum
of the lower Lyapunov number is positive and the second Fredholm
eigenvalue $\eta$ is less than 1. Then $F$ has a unique invariant probability
measure $\mu$ absolutely continuous with respect to the Lebesgue measure on
$[0,1]$ and the dynamical system $([0,1], \mu, F)$ is mixing, and the following
estimate for the decay rate of correlation holds for any pair of functions
$f\in BV$ and $g\in L^{1}$ :

(0.1) $\lim_{n\rightarrow\infty}(\eta+\epsilon)^{-n}\{\int f(x)g(F^{(n)}(x))d\mu-\int fd\mu\int gd\mu\}=0$ ,

for any $\epsilon>0$ .
This result extends the results obtained by the author in [8], and we will
discuss in [9] some further results for more general cases. Some related
topics have appeared in [2], [6], [10], [13] and [14]. Precise definitions of
the lower Lyapunov number $\xi$ and the second Fredholm eigenvalue $\eta$ will
be stated in \S 1.

Certain critical phenomena appear as $\xi\downarrow 0$ , which indicates that the
state of the system approaches the so-called window state. Concerning
window states, we refer the readers to [3]. For the case where $\xi<0$ ,
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