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Introduction

After the famous theorem of Hilbert ”There exists no isometric
immersion of a hyperbolic plane $H^{2}(-1)$ into a 3-dimensional Euclidean
space.” and his conjecture ”There exists no isometric immersion of an
n-dimensional hyperbolic space $H^{n}(-1)$ into a $(2n-1)$-dimensional Euclidean
space.” ([5]), we have studied the problem “Can an n-dimensional hyperbolic
space $H^{n}(-1)$ be isometrically immersed in a Euclidean space $R^{N}$? W.
Henke ([4]) constructed an isometric immersion $H^{n}(-1)\rightarrow R^{4n-\theta}$ . But few
facts have been known beyond them.

In this paper, we get an example of a local immersion of $H^{n}(-1)$

into an n-dimensional complex Euclidean space $C^{n}$ , as a totally real sub-
manifold. Moreover we can determine the immersion of a real space form
$M^{n}(c)$ into a complex space form $\tilde{M}^{n}(4c\sim)$ for $ c<c\sim$ as a totally real sub-
manifold with a certain condition about a mean curvature vector (\S 1).
This is a natural extention of the Ejiri’s Theorem in [2] and contains
an example of Vranceanu [6].

We remark that this immersion cannot be extended globally.
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\S 1. Chen submanifolds.

Let $M$ be a submanifold immersed in $\tilde{M}$. We denote by $\langle, \rangle$ the
Riemannian metrics on $M$ and $\tilde{M}$. Let $\sigma$ and $h$ be the second fundamental
form and the mean curvature vector of the immersion, respectively.

DEFINITION 1.1. A submanifold $M$ immersed in $\tilde{M}$ is called a Chen
submanifold if it satisfies the condition
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