Tokyo J. Math. Vol. 9, No. 1, 1986

Decomposition and Inertia Groups in Z_p -Extensions

Georges GRAS

University of Franche-Comté-Besançon (Communicated by K. Katase)

Introduction

In this paper, we shall give a canonical description of the decomposition and inertia groups, in a Z_p -extension of a number field k, for any prime ideal of k; when this prime ideal divides p, and ramifies in the Z_p extension, all the higher ramification groups are also described. This description gives immediately a numerical knowledge of the previous groups, as soon as the *p*-class group and the group of units of k are numerically known.

Of course, if K/k is any abelian extension, the law of decomposition of prime ideals of k is known if and only if the Artin group of K/k is given; but in practice we have the opposite situation: the extension K/kis specified by mean of some property (for instance K/k is a Z_p -extension...) and the problem is to determine its Artin group. The results obtained in [2] give a general method for this kind of problem, via the use of a logarithm function, Log, which induces a canonical isomorphism between the Galois group G of the compositum \tilde{k} of all Z_p -extensions of k, and an explicit Z_p -module attached to k and depending (numerically) on ideal classes and units. It is well known that the decomposition group G_{e} in \tilde{k}/k , of any prime ideal q of k, is the closure in G of the image of k^{\times} by the Hasse norm residue symbol ((, \tilde{k}/k)/q); then it is sufficient to compute $Log((a, \tilde{k}/k)/q)$ for any $a \in k^{\times}$; we obtain an explicit formula for $Log((a, \tilde{k}/k)/q)$ which permits us to describe G_q and its subgroups such as the inertia and higher ramification groups and to give some properties of jumps of ramification ($\S2$). Finally, to illustrate this study, we consider (in $\S3$) the case of imaginary quadratic fields and give all details for a numerical utilization.

Some basic tools used in this paper may be compared with some ones Received January 21, 1985

Revised October 28, 1985