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Introduction

It has been conjectured in transcendental number theory that $\pi$ and
$\log 2$ are algebraically independent. It has also been conjectured that at
least one of the numbers $\sum_{n=0}^{\infty}2^{-n^{2}}$ and $\sum_{n=0}^{\infty}(-1)^{n}2^{-n^{2}}$ is transcendental.
Though no one has ever proved these conjectures, the authors have
proved the following

PROPOSITION. At least two of the numers

$\pi$ , $\log 2$ , $\sum_{n=0}^{\infty}2^{-n^{2}}$ , $\sum_{n=0}^{\infty}(-1)^{n}2^{-n^{2}}$

are algebraically independent over Q. (This is a special case of Example
2.1, \S 1.)

Let $x$ be a transcendental number, and let $\kappa$ be a real $number\geqq 2$ .
We shall say that $x$ is of transcendence $ type\leqq\kappa$ if there exists a constant
$c>0$ depending only on $x$ and $\kappa$ such that

$\log|P(x)|\geqq-c(\deg P+\log H(P))^{\kappa}$

for all non-trivial polynomials $P$ in $Z[X]$ . Here, $\deg P$ denotes the degree
of $P$, and $H(P)$ denotes the height of $P$, i.e. the maximum of the absolute
values of the coefficients of $P$.

The idea of transcendence type was introduced by Lang in his book
[4]. For example, it follows from Fel’dman’s result [2, Theorem 4] that

(1) $\pi$ is of transcendence $type\leqq 2+\epsilon$ , for every $\epsilon>0$ .
This is a well-known. result in transcendental number theory.
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