Einstein Parallel Kaehler Submanifolds in a Complex Projective Space

Seiichi UDAGAWA

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

Submanifolds with parallel second fundamental form (which are simply called parallel submanifolds) have been studied by many differential geometers. In particular, parallel Kaehler submanifolds in a complex projective space are completely determined (see [1]).

In this paper, we give some characterizations of Einstein parallel Kaehler submanifolds in a complex projective space.

Let $X: M \to E^N$ be an isometric immersion of an n-dimensional compact Riemannian manifold into an N-dimensional Euclidean space. We denote by Δ and $\operatorname{Spec}(M) = \{0 < \lambda_1 < \lambda_2 < \cdots \}$, the Laplacian acting on differentiable functions of M and the spectrum of Δ , respectively. Then, X can be decomposed as $X = X_0 + \sum_{k \in N} X_k$, where X_k is a k-th eigenfunction of Δ of M, X_0 is a constant mapping, and the addition is convergent componentwise for the L^2 -topology on $C^{\infty}(M)$. We say that the immersion is of order $\{l\}$ (or mono-order) if $X = X_0 + X_l$, $l \in N$, $X_l \neq 0$, and of order $\{k, l\}$ (or bi-order) if $X = X_0 + X_k + X_l$, $k, l \in N$, l > k, X_k , $X_l \neq 0$, ... (see [4]).

Let $F: \mathbb{C}P^m \to E^N$ be the first standard imbedding of an m-dimensional complex projective space of constant holomorphic sectional curvature 1 into an N-dimensional Euclidean space, and $i: M^n \to \mathbb{C}P^m$ be a Kaehler immersion of an n-dimensional compact Kaehler manifold. We consider $\phi = F \circ i: M^n \to E^N$. Then, ϕ is mono-order if and only if M is totally geodesic (See [3].), and totally geodesic Kaehler submanifolds are of order 1. Let A be the shape operator of the immersion i, and define the tensor T by

$$T(\xi, \eta) = \operatorname{tr} A_{\xi} A_{\eta}$$
 for $\xi, \eta \in NM$,

where NM is the normal bundle of M. Then T is a symmetric bilinear mapping from $NM \times NM$ into R. A. Ros [3] has proved that M is bi-order Received June 8, 1985