On the Exponentially Bounded C-semigroups

Naoki TANAKA

Waseda University
(Communicated by J. Wada)

Introduction

In this paper we are concerned with exponentially bounded C-semi-groups introduced by Davies and Pang [1].

Let X be a Banach space and let $C: X \to X$ be an injective bounded linear operator with dense range. A family $\{S(t): 0 \le t < \infty\}$ of bounded linear operators from X into itself is called an exponentially bounded C-semigroup if

- (0.1) S(t+s)C=S(t)S(s) for $t, s \ge 0$, and S(0)=C,
- (0.2) for every $x \in X$, S(t)x is continuous in $t \ge 0$,
- (0.3) there exist $M \ge 0$ and $a \ge 0$ such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

For every $t \ge 0$, let T(t) be the closed linear operator defined by $T(t)x = C^{-1}S(t)x$ for $x \in D(T(t)) \equiv \{x \in X : S(t)x \in R(C)\}$. We define the operator G by

For every $\lambda > a$, define the bounded linear operator $L_{\lambda}: X \to X$ by $L_{\lambda}x = \int_{0}^{\infty} e^{-\lambda t} S(t)xdt$ for $x \in X$. It is known that G is closable with dense domain (see [1]) and by [2, (2.3)]

where \overline{G} denotes the closure of G. \overline{G} is called the C-c.i.g. (C-complete infinitesimal generator) of $\{S(t): t \ge 0\}$.

Received June 26, 1986