Токуо Ј. Матн. Vol. 10, No. 1, 1987

On the Number of Parameters of Linear Differential Equations with Regular Singularities on a Compact Riemann Surface

Dedicated to Professor Kôtaro Oikawa on his 60th birthday

Michitake KITA

Kanazawa University (Communicated by R. Takahashi)

Introduction

Let X be a compact Riemann surface of genus g and let Y be a divisor of X consisting of m distinct points p_1, \dots, p_m of X. We suppose that $m \ge 1$ and moreover $m \ge 2$ when g=0. We recall a fundamental fact about linear differential equations with regular singularities; let $\Delta = \{z \in C \mid |z| < 1\}$ be a unit disc in C and let

(1)
$$\frac{d^n w}{dz^n} + a_1(z) \frac{d^{n-1} w}{dz^{n-1}} + \cdots + a_n(z) w = 0$$

be a linear differential equation of order n where $a_i(z)$ is holomorphic in $\Delta - \{0\}$. The origin 0 is said to be a regular singular point of the equation (1) if the functions $z^i a_i(z)$ $(i=1, 2, \dots, n)$ are holomorphic at 0. It is well known that this is equivalent to the condition that the equation (1), multiplied by z^n , can be written in the form

(2)
$$\left(z\frac{d}{dz}\right)^n w + b_1(z) \left(z\frac{d}{dz}\right)^{n-1} w + \cdots + b_n(z) w = 0$$

where $b_i(z)$ $(i=1, \dots, n)$ are holomorphic at 0. Using this fact, we define a linear differential equation on a compact Riemann surface X of order n with regular singularities along Y as follows; let $X = \bigcup_{j=1}^{N} U_j$ be a sufficiently fine finite open coordinate covering of X such that $p_j \in U_j$ $(j=1, \dots, m)$ and $z_j(p_j)=0$ for $j=1, \dots, m$ and z_j is nowhere zero in U_j for $j=m+1, \dots, N$. In each neighbourhood U_j we consider a linear differential equation

(3)
$$\left(z_{j}\frac{d}{dz_{j}}\right)^{n}w+b_{j,1}(z_{j})\left(z_{j}\frac{d}{dz_{j}}\right)^{n-1}w+\cdots+b_{j,n}(z_{j})w=0$$

Received July 1, 1986