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\S 1. Introduction.

In this paper we shall consider properties of ergodic measure preserv-
ing (e.m. $p.$ ) transformations $T$ defined on an infinite (a-finite) Lebesgue
measure space (X, ra $m$). It is well known that, in general, properties
of such transformations are quite different from those of e.m. $p$ . trans-
formations defined on a finite measure space. For example, if $ m(X)<\infty$

then it is easy to show that any non-singular measurable transformation
$S$ defined on (X, $\mathscr{G},$ $m$) satisfying $ST=TS$ must preserve the same measure
$m$ ; this need not be the case if $ m(X)=\infty$ , see [8]. Furthermore, if
$ m(X)=\infty$ , then the $L^{\infty}$-point spectrum $\Lambda(T)$ can be uncountable; [1], [9],

[12].
$A$ distinguishing feature of e.m. $p$ . transformations $T$ defined on a

a-finite measure space is the fact that if $ m(X)=\infty$ then $T$ always

admits weakly wandering (w.w.) sets of positive measure, and hence
w.w. sequences; this is never the case if $ m(X)<\infty$ .

In [7], an example of an e.m. $p$ . transformation $T$ was constructed
which possessed an exhaustive (exh.) w.w. sequence. Namely, an infinite
sequence $\{n_{i}\}$ of integers for which there exists a measurable set $W$ such
that $ T^{n_{i}}W\cap T^{n_{j}}W=\emptyset$ for $i\neq j$ , and $\bigcup_{i}T^{n_{i}}W=X$. It was shown later in
[10] that every e.m. $p$ . transformation $T$ defined on an infinite measure
space admits an exh. w.w. sequence $\{n_{i}\}$ . However, sets which are exh.
and w.w. under such sequences may or may not be of finite measure.
In [4] and [5] a class of e.m. $p$ . transformations is constructed which admit
exh. w.w. sequences $\{n_{i}\}$ for which the corresponding w.w. sets $W$ must
have finite measure; we designate these as transformations of finite type.
We will show in Theorem 1 below that for any e.m. $p$ . transformation $T$

defined on an infinite measure space (X, $\ovalbox{\tt\small REJECT} m$) sets which are exh. and
$w.w$ . for $T$ under the same sequence $\{n_{i}\}$ must have the same measure,

finite or infinite. Hence for a given e.m. $p$ . transformation $T$ defined on
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