Ergodic Measure Preserving Transformations of Finite Type

Stanley EIGEN, Arshag HAJIAN and Yuji ITO

Northeastern University and Keio University

§1. Introduction.

In this paper we shall consider properties of ergodic measure preserving (e.m.p.) transformations T defined on an infinite (σ -finite) Lebesgue measure space (X, \mathcal{B}, m) . It is well known that, in general, properties of such transformations are quite different from those of e.m.p. transformations defined on a finite measure space. For example, if $m(X) < \infty$ then it is easy to show that any non-singular measurable transformation S defined on (X, \mathcal{B}, m) satisfying ST = TS must preserve the same measure m; this need not be the case if $m(X) = \infty$, see [8]. Furthermore, if $m(X) = \infty$, then the L^{∞} -point spectrum $\Lambda(T)$ can be uncountable; [1], [9], [12].

A distinguishing feature of e.m.p. transformations T defined on a σ -finite measure space is the fact that if $m(X) = \infty$ then T always admits weakly wandering (w.w.) sets of positive measure, and hence w.w. sequences; this is never the case if $m(X) < \infty$.

In [7], an example of an e.m.p. transformation T was constructed which possessed an exhaustive (exh.) w.w. sequence. Namely, an infinite sequence $\{n_i\}$ of integers for which there exists a measurable set W such that $T^{n_i}W \cap T^{n_j}W = \emptyset$ for $i \neq j$, and $\bigcup_i T^{n_i}W = X$. It was shown later in [10] that every e.m.p. transformation T defined on an infinite measure space admits an exh. w.w. sequence $\{n_i\}$. However, sets which are exh. and w.w. under such sequences may or may not be of finite measure. In [4] and [5] a class of e.m.p. transformations is constructed which admit exh. w.w. sequences $\{n_i\}$ for which the corresponding w.w. sets W must have finite measure; we designate these as transformations of finite type. We will show in Theorem 1 below that for any e.m.p. transformation T defined on an infinite measure space (X, \mathcal{B}, m) sets which are exh. and w.w. for T under the same sequence $\{n_i\}$ must have the same measure, finite or infinite. Hence for a given e.m.p. transformation T defined on